

CAMOSUN COLLEGE School of Trades and Technology Department of Civil Engineering Technology

CIVE 142 Survey 2 Summer Semester 2021

COURSE OUTLINE

Please note: This outline will not be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

1 Instructor Information

Instructor:	David Ley				
Office hours:	Email only				
Office:	TEC 105 (contact via email)				
Phone:	250-634-4420 (contact via email)	Alternative:			
E-mail:	leyd@camosun.ca				
Website:	CIVE 142 D2L site				

2 **Prerequisites and Co-requisites**

Prerequisite: CIVE 141

3 Short Description

Students traverse and survey a two to three hectare area of land using a total station with a data collector. Data is then uploaded to specialized software in order to create a digital surface and final topographic map. A survey layout is also conducted using a total station and data collector to enable construction of an engineering design.

4 Intended Learning Outcomes

The student will be able to use a total station to ...

- 1. Determine the elevation of an inaccessible point by 'trigonometric leveling' using a Total Station.
- 2. Determine the coordinates (N,E,Z) of an inaccessible point by 'triangulation' using a Total Station.
- 3. Perform a closed traverse using a Total Station with a Data Logger.
- 4. Survey a large rough land area: Retracement traverse and topographic data collection.
- 5. Upload and Download survey data to and from a data logger.
- 6. Manage and edit raw survey data logger files.
 - Convert raw data to a field book file; import files into a civil survey software (i.e. Civil 3D).
- 7. Use civil software to create a contour plan with annotated contours then plot a scale drawing.

The student will be able to participate in a group survey project that results in a large area being surveyed for later use with other courses.

- 1. The student will perform one of two closed control traverses that share a common leg. A minimum of one of the traverses will include two or more OIPs.
- 2. Precision for the traverse will be calculated and the traverse points adjusted using the compass method.
- 3. The student will perform closed bench mark circuits that will be used to carry over an NAD 83 referenced elevation from a nearby OCM.
- 4. The traverses will be adjusted for elevation and to use UTM coordinates using civil software to translate, rotate and change elevations of the points in each traverse as needed.
- 5. Student survey groups will use total stations to collect side shots
- 6. A contour map created and annotated.
- 7. Additional site information from local government will be x-referenced to the drawing.

5 Required Materials

Field Book	'Rite-in-Rain' : stapled (#351 - preferred) or spiral bound (#353)	Required
2 mm Lead Holder	Staedtler 780C 2mm lead holder	Required
2mm 2H leads	Staedtler 2mm 2H leads (in tube)	Required
Short ruler	6 inch ruler with both metric and inch	Required
White eraser	Staedtler white vinyl eraser	Required
Lead sharpener	Staedtler 502 2mm lead sharpener (note the model with the chrome tip has a built-in lead sharpener)	Required if you have the black tipped lead holder

6 Reference Materials

Text: Kavanagh 2015, Surveying with Construction Application, 8th ed. [or 7th ed.]

7 Course Content and Schedule

Classes: 4 hours per week (videos outlining the lab will be posted prior to the lab)

8 Course Content and Schedule

Classes: 4 hours per week

Week	Date (Friday)	Lab #	Торіс	
1	07-May		Review	
2	14-May	1	Lab: Introduction to Data Collectors	
3	21-May	2	Lab: Introduction to Data Collectors continued	
4	28-May	3	Lab: Control Traverse Survey Using Data Collectors	
5	04-Jun	4	Lab: Station Descriptions	
6	11-Jun	5	Lab: 'Big Field' Control Traverses	
7	18-Jun	5	Lab: 'Big Field' Control Traverses	
8	25-Jun	6	Lab: Topographic Survey Data Collection	
9	02-Jul	6	Lab: Topographic Survey Data Collection continued	
10	09-Jul	7	Lab: Curve Staking	
11	16-Jul	8	Lab: Trigonometric Leveling	
12	23-Jul	9	Lab: Surface Modelling	
13	30-Jul			
14	06-Aug		No EXAM	

This lab schedule may change during the semester depending how long it takes to perform each lab with consideration for covid-19 restrictions.

9 Student Assessment

COMPONENTS	WEIGHTING	COMMENTS
Field Book	25%	Formal booking for each lab
Labs	40%	Lab work
Final Project	25%	Topographic Map of Surveyed Site
Instructor Assessment	5%	Attendance, Punctuality
Participation	5%	Group Participation Assessment
Exams		No Exams
TOTAL	100%	

10 Grading System

Standard Grading System (GPA) See Camosun Grading Policy E-1.5

• Class Policies

- All lab work & assignments must be completed and submitted.
 - Late assignments submitted before marked assignments have been returned to class will have 10% deducted.
 - Late assignments submitted after marked assignments have been returned to class will be checked and count as submitted but will receive no mark.
- Full attendance at the lab sessions is mandatory unless prior approval is granted by the instructor.
 - Students must speak directly to the instructor, and will be granted approval to miss a lab only under extreme circumstances.
 - In case of illness or other unscheduled cause for absence, the student must notify the instructor at least 30 minutes before class by email or by telephone.
- 2% will be deducted from the final grade for each absence from a lab without the instructor's prior permission or a doctor's certificate.
- Late arrivals greater than 20 minutes will be considered an absence.