

School of Trades & Technology Department of Electronics and Computer Engineering

ECET 292: Design for Manufacturing

Description

Students will study material that emphasizes the relationship of electronic design and manufacturing, including an introduction to CAD/CAM, Resource Management, Thermal Management and various standards. They will also examine design methodology for the various materials and equipment used in the manufacture of electronic products.

Contact Information

Instructor: Todd Rayson Office: TEC 214

Phone: 250 370-4573 Email: raysont@camosun.bc.ca

Pre-requisites

One of:

• C in English 12

• C in English First Peoples 12

• **C** in ENGL 092

• C in ENGL 103

• C in ENGL 130

• **C** in ENGL 142

• **C** in ELD 092

• C in ELD 097

• C in ELD 103

• **C** in ECET 190

And one of:

• C in Pre-calculus 12

• C in Principles of Math 12

• C in MATH 107

• C in MATH 115

And one of:

• C in Physics 11

• C in Physics 101

Course Type

Face-to-face fixed-pace instruction generally on campus

• Lecture: 4 Hours per Week **Online**

• Lab: 2.5 Hours per Week **Face to Face**

• Out of Class Work: 4 to 8 Hours per Week

Credits: 4.0

ECET 292 Outline 2021 Page 1 of 5

Intended Learning Outcomes

Upon successful completion of this course, a student will be able to:

- communicate appropriate design documentation
- compare prototype vs. medium vs. large scale manufacturing
- describe the implementation of compliance and safety standards
- demonstrate CAD/CAM techniques using industry standard software
- construct a physical object from a 3D design
- employ strategies for thermal/power/electromagnetic management
- demonstrate the effective use of basic measurement tools
- describe Enterprise Resource Planning principles as they apply to product development and manufacture
- explain the criteria for quality management systems, principles and standards
- demonstrate familiarity with manufacturing processes and equipment
- describe and compare manufacturing materials and their applications
- interpret and apply safety codes and risk management principles

11. Grading System:

➤ Letter Grades as per Camosun College Policies

IMPORTANT NOTES:

Note:

- Late penalties of 50% and 5% per day will be applied at the instructor's discretion.
- Lab attendance is MANDATORY, failure to attend labs will result in an F grade
- A 20% penalty will be applied to lab mark for Late Attendance
- All labs and assignments must be handed in at least 3 days prior to the final exam
- Lab grades will not be awarded for missed labs without a valid reason for absence and a doctor's note if sick

To Pass

- You must achieve a minimum of 60% on your final exam
- You must have an average of 60% in assignments tests and quizzes
- You must have hand in all lab reports and achieved a min of 60% average
- You must have an overall course mark of 60%.

COURSE EVALUATION:

Labs	30%		
Assignments	5%	Equipment Stewardship	5%
Tests	20%	Final Exam	40%

TEXT BOOKS AND REFERENCES:

- ♦ Text: None
- ♦ All documents will be posted on D2L
- Web Resources will also be used

ECET 292 Outline 2021 Page 2 of 5

Course Outline:

Design Documentation

- Manufacturing
 - PCB fabrication documents
 - Test documents
 - o Enclosure Fabrication
- Design Documentation
 - o Design Reviews
 - Handover to Manufacturing
 - Over the wall vs Concurrent Design
 - Version Control

Compliance and Safety Standards

- Standards
 - o E-Waste
 - o CSA, UL, FCC
 - o CE (Europe), EU
- Electromagnetic Compatibility EMC
 - o EMC
 - o Mutual Recognition Agreements (MRAs)
 - Test Methods
 - o Design

CAD/CAM Techniques

- Drawing standards and techniques
 - Review of ECET 190
- Fusion 360
 - Solid Modeling
 - o Constraint Driven
 - Tutorials
 - o File Formats
- 3D modelling Integration using Altium and Fusion 360 (*Optional Topic*)
 - o MCAD <-> ECAD, Mechanical CAD <-> Electrical CAD <-> 3D Printer
 - o Supported Data Exchange File Formats
 - o Clearance and Tolerance

Measurement Tools (Optional)

- Review measuring tape and callipers
- 3D Scanning Overview
 - o File Types
 - Importing to Fusion 360
- CMM

3D Printing

- STL (Standard Triangle Language) and 3MF (3D Manufacturing Format) file formats
- 3D printing approach
- Student drawn parts

ECET 292 Outline 2021 Page 3 of 5

Thermal and Power Management

- Thermal Management and Enclosure Design
 - Environmental Testing
 - o Thermal Analysis (Optional)
- Power Budget
 - o Overall concept
 - o Linear vs switching power supplies
- Software tools for analysis: Fusion 360
- Fail-Safe (Optional)
 - o General concept
 - Hardware examples
 - Software Examples

Enterprise Resource Planning - The Supply Chain

- Time management in manufacturing
 - Timesheets
 - o Labour and product Progress tracking
 - Part Procurement and Inventory
- JIT Manufacturing
- Lean manufacturing principles
 - o Toyota Production System
 - Bottlenecks and obstacles
- Project Management
 - Serial and Parallel Processes

Quality Management Systems, Principles and Standards

- ISO
 - Quality management standard basic concepts and language
 - o Requirements of a quality management system
 - o Environmental management standards

Manufacturing Processes and Equipment

- Electronics Manufacturing
 - o Production Fixturing and Tooling
 - o PCB Manufacturing
 - Final Assembly
 - o Product Acceptance Sampling
- Enclosure Design
 - o CNC Machining
 - o Human Machine Interface
 - Application
 - o Cost
 - o Weight
 - o Thermal
 - Material
 - Strength
 - o Environment
 - o IP Ratings (Ingress Protection Markings), Europe
 - o NEMA (National Electrical Manufacturers Association), North America

Finish

ECET 292 Outline 2021 Page 4 of 5

Manufacturing Materials and their Applications

- Metals
 - o Steel
 - Stainless
 - o Aluminium
 - o Titanium
 - o Copper
- Plastics and composites
 - o Thermoplastic
 - o Thermosetting plastic
 - o Plastic injection molding
 - Plastic Blow molding
 - o Two shot (multi shot) molding
 - Ultrasonic welding
- Fasteners for materials
 - o Cost
 - o Material dependant
 - Installation
 - o Special Tools
 - Self-Clinching Fasteners
 - Metal fasteners for plastic
 - Disassembly
 - Finishing
- Adhesives

Safety Codes

• Electrical Safety Code

Prototype vs. Medium vs. Large Scale Manufacturing

- Principles of Risk Management
- Job vs Batch vs Mass Production
- Design Cautions for Manufacturing:
- Reliability
- Electrical Connectors
- Differences due to location of manufacturer
- Cost reduction
- Time to market
- Part Selection
- Early vendor involvement
- Cultural differences due to location of manufacturer
- Hand loaded Components and Wiring:
- Yield rate
- Offshore Manufacturing Issues
- Quoting Implications
- Design for testing
- Design for Assembly

ECET 292 Outline 2021 Page 5 of 5