

ENGR 291 – Solid Mechanics & Dynamics

Course: ENGR 291 Solid Mechanics & Dynamics, 2021

Instructor: Russ Rook, M.A.Sc., P.Eng.

Office: TEC 113

Email: rook@camosun.ca

Textbook & References

No textbook required for ENGR 291; lecture notes are provided on D2L.

Calendar Description

In this course, the topics will cover differential equations applied to solid mechanics and dynamics. In addition to the detailed objectives, an overall objective of ENGR 291 is to integrate the concepts from different subjects to work effectively on multi-disciplinary engineering problems.

Intended Learning Outcomes

Upon successful completion of this course a student will be able to:

- Describe 2-D motion of rigid bodies, and compute velocities and accelerations of any point on a rigid body.
- Determine the inertial (d'Alembert) forces and moments of a rigid body.
- Calculate applied forces and moments, to balance inertial forces and moments for a rigid body.
- Determine the kinematic and kinetic (motion, force and moment) values for a moving body from momentum and energy relationships (and vice-versa).
- Model and analyze the vibration of a one-dimensional system.
- Apply the fundamental concepts in Solid Mechanics:
 - o equilibrium, compatibility and material behavior;
 - o normal, shear and bearing stress;
 - stress concentration;
 - o stress on an oblique plane; and
 - factor of safety.
- Describe multi-axial stresses and strains, Hooke's Law, Poisson's ratio, St. Venant's principle; volumetric strain, and bulk modulus. Analyze thin-walled pressure vessels.
- Transform stress and strain axes in two dimensions using Mohr's Circle and describe the concept of principle stresses.
- Analyze deformation, shear stress, elastic response, and angle of twist on circular shafts.
- Analyze indeterminate shafts.
- Determine the deformation, stress, and moment of inertia for beams in bending and apply the fundamental beam formula.
- Construct shear force and bending moment diagrams for transverse loading. Apply the elastic curve, direct integration method, singularity functions, superposition, and tabulated solutions.

ENGR 291 – Solid Mechanics & Dynamics

Course Content (subject to modification, if necessary)

Week	Quizzes	Assignments	Course Content
1	-	-	Dynamics – Rigid body kinematics, relative positions and velocities.
2	Quiz 1	-	<i>Dynamics</i> – Relative accelerations of a rigid body.
3	Quiz 2	Assign. 1	<i>Dynamics</i> – Rigid body kinetics, forces, moments, d'Alembert's principle.
4	Quiz 3	-	Dynamics – Rigid body kinetics using energy methods.
5	Quiz 4	Assign. 2	Dynamics – Vibration of single degree-of-freedom systems.
6	-	-	READING BREAK
7	Quiz 5	-	Solid Mechanics – Cartesian tensor notation.
8	Quiz 6	-	Solid Mechanics – The stress tensor, normal and shearing stresses, the stress equilibrium equations.
9	Quiz 7	-	Solid Mechanics – Stress concentration factors, factors of safety, the strain tensor, compatibility equations, volumetric strain, Poisson's ratio, constitutive equations and Hooke's Law, St. Venant's principle.
10	Quiz 8	Assign. 3	Solid Mechanics – Stress and strain transformations, principle stresses as eigenvalues, 2D Mohr's circle, thinwalled pressure vessels.
11	Quiz 9	-	Solid Mechanics – Bernoulli-Euler beam theory, second-moment of area and the flexure formula, load, shear, moment, slope, and deflection curves, singularity functions.
12	-	Assign. 4	Solid Mechanics – Beam analysis using direct integration and singularity functions.
13	-	-	Solid Mechanics – Stress analysis and deformations of circular shafts, angle of twist, statically indeterminant shafts.
14	Quiz 10	Assign. 5	Solid Mechanics – Review period.

Evaluation & Grading System

Assignments 23% (graded on completion with complete solutions posted)

Quizzes 77% (11 quizzes, equally weighted)

See http://camosun.ca/about/policies/education-academic/e-1-programming-and-instruction/e-1.5.pdf for the Camosun grading policies.

ENGR 291 – Solid Mechanics & Dynamics

College Supports, Services & Policies

Immediate, Urgent, or Emergency Support

If you or someone you know requires immediate, urgent, or emergency support (e.g. illness, injury, thoughts of suicide, sexual assault, etc.), SEEK HELP. Resource contacts can be found at http://camosun.ca/about/mental-health/emergency.html or http://camosun.ca/services/sexual-violence/get-support.html#urgent.

College Services

Camosun offers a variety of health and academic support services, including counselling, dental, disability resource centre, help centre, learning skills, sexual violence support & education, library, and writing centre. For more information on each of these services, visit the STUDENT SERVICES link on the College website at http://camosun.ca/.

College Policies

Camosun strives to provide clear, transparent, and easily accessible policies that exemplify the college's commitment to life-changing learning. It is the student's responsibility to become familiar with the content of College policies. Policies are available on the College website at http://camosun.ca/about/policies/. Education and academic policies include, but are not limited to, Academic Progress, Admission, Course Withdrawals, Standards for Awarding Credentials, Involuntary Health and Safety Leave of Absence, Prior Learning Assessment, Medical/Compassionate Withdrawal, Sexual Violence and Misconduct, Student Ancillary Fees, Student Appeals, Student Conduct, and Student Penalties and Fines.