CAD FOR ELECTRONICS

(ECET 231)

COURSE OUTLINE

CALENDAR DESCRIPTION

This course introduces Altium Designer 19 (or later edition), a computer-based electronics design software for engineers/technologists to design printed circuit boards (PCB), FPGA, and embedded software, and to manage project data. Students learn how to create the electronic schematic of a circuit, how to use schematic libraries to select and design electronic components, and how to plan a printed circuit board layout. Students use these skills to create a printed circuit board from a schematic diagram.

CREDIT 2.0

IN-CLASS WORKLOAD: 3 hours / week
OUT-OF-CLASS WORKLOAD: 3 hours / week
PREREQUISITES ECET 242, 260

OBJECTIVES

- Be able to draw schematic diagrams (simple, parallel, hierarchical)
- Be able to find, select, and create schematic components (schematic library editor)
- Be able to lay out multi-layer printed circuit boards (PCB)
- Be able to find, select, and create PCB footprints (PCB library editor)
- Be able to create 3D view of a PCB
- Be able to manage the PCB project data

EVALUATION* [* Delay levy (labs/assignments): -10% per day]

Attendance to all classes and satisfactory completion of all assignments and labs are **mandatory**. The lab grade, the theory grade, and the final exam must be over 50% to pass the course. The final grade will be determined by the following components:

Lab exercises (13) 50%
 Midterm Exam 20%
 Final Exam 30%

♦ Grading: in accordance with Camosun College Policy

TEXT BOOKS AND REFERENCES:

- ♦ ECET 231 Course Notes (check it with your instructor)
- ♦ Altium website (www.altium.com)

TABLE OF CONTENTS

SECTION I – The Basics of Altium Designer 19

1	Introduction	to Altium	Designer	19
1	IIIII Ouuclion	to Aitiuiii	Designer	IJ

- 1.1 Review of schematic circuits and printed circuit boards
- 1.2 Introduction to the environment of Altium
- 1.3 A simple schematic circuit capture *Lab01*

2.... Schematic capture editor

- 2.1 Elements and tools of the schematic capture editor
- 2.2 10-step procedure of creating schematic captures
- 2.3 How to find desired schematic components (symbols)
- 2.4 How to install proper (schematic) libraries
- 2.5 Electrical rules setting -- for schematic captures
- 2.6 Netlist and bill of materials (BOM)
- 2.7 Project library versus general library
- 2.8 Troubleshoot schematic captures
- 2.9 A de-morgenized logic circuit capture *Lab02*

3 PCB layout editor

- 3.1 Elements and tools of the PCB layout editor
- 3.2 10-step procedure of creating PCB layouts
- 3.3 PCB document wizard
- 3.4 How to find desired PCB components (footprints)
- 3.5 How to install proper (PCB) libraries
- 3.6 Import (netlist) changes versus Update PCB
- 3.7 Design rules setting -- for PCB layouts
- 3.8 Manual route versus auto route
- 3.9 Troubleshoot a PCB layout
- 3.10 Reshape a PCB board (re-size)
- 3.11 How to pour polygon
- 3.12 Fabrication outputs versus assembly outputs
- 3.13 A through-hole single-sided PCB design *Lab03-04*

SECTION II – Library Editors

4.... Schematic Library Editor

- 4.1 What is the schematic library editor?
- 4.2 Elements and tools of the schematic library editor
- 4.3 Three ways to create a schematic component (electrical symbol) *Lab05*

5.... PCB Library Editor

- 5.1 What is PCB library editor?
- 5.2 Elements and tools of the PCB library editor
- 5.3 Three ways to create a PCB footprint (PCB symbol) *Lab06*

SECTION III - Advanced Designs, Considerations, and Data Management

6.... PCB with multiple signal layers & multiple internal planes

- 6.1 Parallel format of a multi-channel schematic capture
- 6.2 Hierarchical format of a multi-channel schematic capture *Lab07-08*
- 6.3 PCB layout with two signal layers (double sided)
- 6.4 PCB layout with two signal layers and two internal planes (power/ground)
- 6.5 Split internal planes *Lab09-10*
- 6.6 PCB layout with more than two signal layers and/or two internal planes
- 6.7 Layer stack management

7.... PCB 3D Modeling

- 7.1 3D modeling has changed electronics design forever
- 7.2 Creating 3D component bodies in a footprint library
- 7.3 Embedding a 3D STEP model in a footprint *Lab11*
- 7.4 3D Measuring in Altium Designer

8.... PCB Fabrication Documents

- 8.1 Bill of materials (BOM)
- 8.2 Gerber/ODB++
- 8.3 NC drill setup
- 8.4 Getting the layers stack right
- 8.5 File export centroid
- 8.6 PCB Panelization
- 8.7 How to do "Embedded Board Array" (Panelize) -- procedure
- 8.8 An example from Epec Engineered Technologies

9	The advanced knowledge of PCB design
9.1	Schematic template management
9.2	Board layers and Colors management (PCB)
9.3	Track width management
9.4	Holes and vias management
9.5	Solder paste/mask management
9.6	Room & Classes management
9.7	Mechanical layers management
9.8	Grounding and de-coupling
9.9	EMI/EMC considerations
9.10	High speed signal considerations
9.11	Differential pair & length matching
9.12	PCB Power distribution network (PDN) analyzer – <i>Lab12</i>
9.13	BGA components layout – <i>Lab13</i> *
9.14	PCB project management

Appendix: Protel 2004/DXP shortcut keys

Labs

Lab #1	Introduction to Altium Designer		
Lab #2	Simple logic Circuit Schematic Capture		
Lab #3-4	Single-sided PCB Layout		
Lab #5	Schematic Library Editor – create schematic symbols		
Lab #6	PCB Library Editor – create PCB footprints		
Lab #7-8	Multi-sheet Schematic Design		
Lab #9-10	Multi-layer PCB Design		
Lab #11	3D PCB Design		
Lab #12*	PCB Power Distribution Network (PDN) Analyzer		
Lab #13*	BGA PCB Design (* when time is allowed)		

Instructor Information

Instructor	John YANG	
Office hours	TBA	
Location	TEC 268	
Phone	250-370-4213	Alternative:
E-mail	yang@camosun.bc.ca	
Website	www.camosun.ca	