# CAMOSUN COLLEGE

## ELECTRONICS & COMPUTER ENGINEERING DEPARTMENT



## COURSE OUTLINE

#### **CALENDAR DESCRIPTION**

#### **ELEN 165 Microcontrollers**

This course introduces microcontrollers hardware and software to electronics technician students, with emphasizing the PIC16F877A microcontroller and its applications. Topics include microcontrollers architecture, programming basics, hardware interfacing, and troubleshooting.

| OFFERED:<br>CREDIT:<br>IN-CLASS WORKLOAD:<br>OUT-OF-CLASS WORKLOAD:<br>PREREQUISITES: | Summer Semester<br>3<br>4 lecture, 3 lab<br>5 hrs/wk<br>Reserved for DND MARTECH Program |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Instructor:                                                                           | John Yang                                                                                |
| Office:                                                                               | TEC 268                                                                                  |
| Phone:                                                                                | (250) 370-4213                                                                           |
| Email:                                                                                | yang@camosun.bc.ca                                                                       |

## **LEARNING OUTCOMES:**

Upon successful completion of this course a student will be able to:

- > follow prescribed safety procedures appropriate to an electronics laboratory;
- describe the architecture of a microcontroller;
- program a microcontroller using assembly and C programming languages;
- design, compile and debug a microcontroller program in an integrated development environment (IDE);
- create programs to control hardware devices;
- handle exception processing and interrupt service routine;
- > use a microcontroller to control hardware peripherals;
- > test, troubleshoot and emulate programs for microcontrollers systems.

## OUTLINE:

#### 1. Introduction to Microcomputers

- 1.1 History of Computers
- 1.2 Types of Computers
  - 1.2.1 Mainframe Computers
  - 1.2.2 Mini-computers
  - 1.2.3 Microcomputers
- 1.3 Elements of a Microprocessor System
  - 1.3.1 Basic Block Diagrams
  - 1.3.2 The CPU
  - 1.3.3 Memory (RAM, ROM, EPROM, EEPROM)
  - 1.3.4 Input/Output (I/O)
  - 1.3.5 Internal Buses/External Buses
  - 1.3.6 Speed
- 1.4 Differences between Microprocessors, Microcontrollers, and Microcomputers
- 1.5 Microprocessor Architectures
  - 1.5.1 Harvard Architecture
  - 1.5.2 Von Neumann Architecture
  - 1.5.3 Pipeline Architecture

### 2. Number Systems Review

- 2.1 Binary, Decimal, Hexadecimal, and Their Conversions
- 2.2 Decimal and BCD Code Conversion
- 2.3 The ASCII Character Set (ASCII Code)
- 2.4 Addition and Subtraction in Binary
- 2.5 Signed numbers and Two's Complement
- 2.6 Overview of Parity

### 3. Introduction to PIC16F877A Microcontroller

- 3.1 PIC16F877A Hardware Overview (Block Diagram)
  - 3.1.1 Processor Architecture
  - 3.1.2 Memory
  - 3.1.3 Buses (Address, Data, Control)
  - 3.1.4 Ports
  - 3.1.5 Timers
  - 3.1.6 Analog to Digital Conversion
  - 3.1.7 Comparators
  - 3.1.8 Pulse Width Modulation
- 3.2 Microcontroller Software Principles
  - 3.2.1 Instruction Execution and Instruction set
  - 3.2.2 Mnemonic Representation/textual format
  - 3.2.3 Introduction to Addressing Modes
  - 3.2.4 Interpreting the Data Book (Hand Assembly)
- 3.3 PIC16F877A Assembly language instruction set
  - 3.3.1 Accumulator and registers
  - 3.3.2 Data movement
  - 3.3.3 Bit manipulation
  - 3.3.4 Arithmetic
  - 3.3.5 Conditional branching
- 3.4 PIC Microcontrollers Applications

## 4. MPLAB integrated development environment (IDE)

- 4.1 Editor
- 4.2 Assembler
- 4.3 Compiler
- 4.4 Linker
- 4.5 Programmer
- 4.6 Simulator

### 5. PIC Programming Basics in Assembly Language

- 5.1 Assembly Directives
- 5.2 Data and Storage
- 5.3 Simple I/O
- 5.4 Decisions (selection)
- 5.5 Repetition (loops)
- 5.6 Simple PIC Programs fragments with conditional branches, loops, and subroutines

### 6. PIC Programming Basics in C Language

- 6.1 Preprocessor Directives
- 6.2 Data and storage
- 6.3 Simple I/O
- 6.4 Decisions (Selection)
- 6.5 Repetition (loops)
- 6.6 Simple PIC Programs (applications)
  - 6.6.1 Switch debouncing
  - 6.6.2 LED counter
  - 6.6.3 LCD display
  - 6.6.4 Matrix keypads

#### 7. Introduction to MPLAB C18 compiler

- 7.1 Overview
- 7.2 Installation
- 7.3 Integrating with MPLAB IDE

#### 8. PIC Exception Handling

- 8.1 Interrupt logic
- 8.2 Interrupt service routines
- 8.3 Interrupt constraints

### 9. PIC Hardware Peripherals Applications

- 9.1 Timers
- 9.2 Interrupts
- 9.3 Interfacing LCDs
- 9.4 Interfacing keypads
- 9.5 Implementing analog-to-digital converters
- 9.6 Serial communications and interfacing
  - 9.6.1 RS-232
  - 9.6.2 RS-485
- 9.7 I<sup>2</sup>C embedded serial computer bus

#### 10. Development and Debugging Tools

- 10.1 Development Systems
- 10.2 in-Circuit Emulation
- 10.3 Logic Analyzer
- 10.4 Signature Analysis
- 10.5 Diagnostics
- 10.6 Troubleshooting Techniques

### EVALUATION (Grading according to College policy):

Marks will be assigned to assignments, laboratory exercises, term tests and the final exam. These marks will be weighted according to the criteria defined in **Table 1: Evaluation Criteria** to obtain a composite percentage mark.

#### A passing grade must meet following three criteria:

- 1) Overall lab mark is equal to or greater than 60%;
- 2) Overall theoretical mark (assignments, tests, final exam) is equal to or greater than 60%;
- 3) The final exam mark is equal to or greater than 50%.

The percentage mark will be translated to a college standard letter grade according to **Table 2**: **Percentage to Letter Grade Translation**. Table 2 is applicable in this year and to this course only. The course outline identifies concepts and abilities that will be evaluated in this course.

### Table 1: Evaluation Criteria

| Quizzes and Assignments | 20%  |
|-------------------------|------|
| Term test 1             | 10%  |
| Term test 2             | 10%  |
| Final Exam              | 40%  |
| Total theoretical marks | 80%  |
|                         |      |
| Laboratory Evaluation   | 20%  |
| Total                   | 100% |

### Table 2: Percentage to Letter Grade Translation

### **GRADING (in accordance with College policy):**

| A+ | 90 – 100% | B- | 70 – 72% |
|----|-----------|----|----------|
| Α  | 85 – 89%  | C+ | 65 – 69% |
| A- | 80 - 84%  | С  | 60 – 64% |
| B+ | 77 – 79%  | D  | 50 – 59% |
| В  | 73 – 76%  | F  | < 50%    |

### TEXT BOOKS AND REFERENCES:

- Course notes and handouts
- Data sheets/manuals
- Internet/Websites