CAMOSUN COLLEGE

ELECTRONICS ENGINEERING DEPARTMENT

(ECET 280)

COURSE OUTLINE

_

CALENDAR DESCRIPTION

ECET 280 Data Acquisition & Programmable Logic Controllers

This course offers a comprehensive study of data acquisition (DAQ) systems including: sampling theory, aliasing, time and frequency domains representation, anti-aliasing and recovery filter design, sample-and-hold (S/H) techniques, quantization theory, analog-to-digital (A/D) and digital-to-analog (D/A) converters, and the virtual instrumentation software LabVIEW. This course also covers major topics of programmable logic controllers (PLCs) including: PLC addressing and basic instructions, PLC Ladder logic, PLC timer and counter functions, PLC comparison and math operations, data handling and program flow control.

OFFERED:	Semester 3 (fall)
CREDIT:	3
IN-CLASS WORKLOAD:	3 lecture, 2.5 lab /week
OUT-OF-CLASS WORKLOAD:	6 hours /week
PREREQUISITES:	ECET 165

OBJECTIVE

- Be able to critique Data Acquisition (DAQ) systems in following aspects: signal acquiring, signal conditioning, and signal digitizing.
- Be able to use programmable logic controllers (PLCs)
- Be able to program the virtual instrumentation software LabVIEW

TABLE OF CONTENTS

Part I **Data Acquisition Systems**

1.	Introduction to Data Acquisition (DAQ) systems	2 hours
	1.1. DAQ, DDS and "pure" computer systems	
	1.2. Five stages of a DAQ system	
	1.3. Relationships between stages	
	1.4. DSP applications in DAQ systems	
2.	Signal Conditioning and sample-hold circuits	8 hours
	2.1. Introduction to Signal Conditioning	
	2.2. Anti-aliasing and reconstruction filters	
	2.3. Switched capacitor filters	
	2.4. Sampling theory	
	2.5. Sample-hold circuit design	
3.	Analog-to-Digital (A/D) converters and Digital-to-Analog (D/A) converter	rs 8 hours
	3.1. Quantization theory	
	3.2. Digital-to-analog (D/A) converters	

- 3.3. Analog-to-digital (A/D) converters
- 3.4. The frequency relationship between A/D converters and S/H circuits
- 3.5. A/D and D/A circuits design
- 3.6. Voltage-to-frequency (V/F) and frequency-to-voltage (F/V) converters

4. Instrumentation (*selective*)

- 4.1. Review of transducers and signal conditioning
- 4.2. Voltage references
- 4.3. Analog multiplexers and demultiplexers
- 4.4. Field wiring: shielding, grounding and noise considerations
- 4.5. Errors in data acquisition systems
- 4.6. DAQ systems specification
- 4.7. Examples of DAQ systems design
- 4.8. Over-sampling versus under-sampling

Part II Laboratory Virtual Instrument Engineering Workbench (LabVIEW)

5. Introduction to LabVIEW

(to be done in the lab)

2 hours

- 5.1. What is LabVIEW
- 5.2. LabVIEW control panels, block diagrams, and tools
- 5.3. LabVIEW functions and subroutines (sub-vi)
- 5.4. LabVIEW Serial communication and network communication

6 hours

Part III Programmable Logic Controllers (PLCs)

6.	 Introduction to PLCs 6.1. What are PLCs 6.2. Input/output devices 6.3. PLC hardware – Allen-Bradley controllers 6.4. PLC software – LogixPro 500 and RSLogix 500 	2 hours
7.	PLC addressing and basic instructions7.1. Allen-Bradley PLC addressing7.2. Basic input/output instructions7.3. Branches	2 hours
8.	 Ladder logic programming 8.1. Boolean statements and Ladder logic equivalents 8.2. Commonly used ladder logic sequences 8.3. Properly formatted outputs 8.4. Boolean logic and truth table review 	4 hours
9.	 PLC functions and operations 9.1. Timers 9.2. Counters 9.3. Math instructions 9.4. Comparison 9.5. Data handling 9.6. Program flow control 9.7. Bit shifts and Sequencer 	8 hours

TEXTBOOKS AND REFERENCES

- 1. Max Rabiee, **Programmable Logic Controllers**: Hardware and Programming, 3rd Edition, G-W Publisher, ISBN: 978-1-60525-945-1
- 2. James A. Rehg, Glenn J. Sartori: **Programmable Logic Controllers**, 2nd Edition, Pearson Education Limited, ISBN: 978-0-13-504881-8
- 3. ECET 280 Course Notes
- 4. Instructor's handouts
- 5. Manufacturers' datasheets

LABORATORIES

- 1. LabVIEW (I) Introduction to LabVIEW
- 2. LabVIEW (II) Functions and Sub-VI
- 3. LabVIEW (III) DataSocket and Serial Communication
- 4. Anti-aliasing filter
- 5. Sample-and-hold circuit
- 6. Digital-to-analog converter
- 7. Analog-to-digital converter
- 8. PLCs (I) Introduction to LogixPro 500 PLC Simulator
- 9. PLCs (II) Garage Door Control
- 10. PLCs (III) Silo system
- 11. PLCs (IV) Traffic control
- 12. PLCs (V) Introduction to Allen-Bradley PLCs and RSLogix 500
- 13. PLCs (VI) Analog I/O modules (MicroLogix 1200)
- 14. PLCs (VII) PWM/PID control (MicroLogix 1200)

EVALUATION

•	Labs	20%
•	Assignments and Quizzes	20%
•	Midterm Exam	20%
•	Final Exam	40%

<u>GRADING</u> In accordance with College policy

Letter Grades:

A+	90 - 100%	B-	70 - 72%
Α	85 - 89%	C+	65 - 69%
А-	80 - 84%	С	60 - 64%
B +	77 - 79%	D	50 - 59%
B	73 - 76%	F	0 - 49%

A <u>minimum of 50%</u> must be achieved in each of the theory and lab portions to pass the **course**. Less than 50% in either portion will result in a failure of the entire course.

Note:

- Lab and lecture portions MUST be passed individually.
- Late penalties of 10% per day will be applied at the instructor's discretion.
- Lab attendance is MANDATORY. Failure to attend sufficient labs will result in an F grade.
- Lab grades will not be awarded for missed labs without a valid reason for absence.