

CAMOSUN COLLEGE School of Trades and Technology Department of Civil Engineering Technology

CIVE 152 Transportation Engineering Winter 2019

COURSE OUTLINE

Please note: This outline will not be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

1 Instructor Information

Instructor	Peter Fell	
Office hours	See instructor's website and posting outside office	
Location	TEC 108	
Phone	250-370-4483	
Alternate	250-857-2547 (text preferred)	
E-mail	FellP@camosun.bc.ca	
Website	http://civil.camosun.bc.ca/student/	

2 Prerequisites and Corequisites

Pre/Corequisite:

• 'C' in CIVE 132

3 Hours and Credits

Course Activity

- ☑ Lecture (Direct Instruction)
- Seminar (Direct Instruction)
- Lab / Collaborative Learning
- Supervised Field Practice
- Workplace Integrated Learning (Coop, Internship, etc.)
- Other*(please note):

 Hours / Week
 Instruction – No of Weeks (Q=11; S=14; "P or S" = 7)

 2
 14

 3
 14

Credits = 3

4 Short Description

Students are introduced to the analysis and design of transportation systems at several jurisdictional levels and design domains from rural divided highways to local urban roadways. Students learn how to design cross-sections and explore safety considerations, road drainage and mixed-mode uses. An overview of traffic operations is given to familiarise the student with current analysis methods.

5 Intended Learning Outcomes

- Identify legislative authorities and discuss relationships between municipal, regional, provincial and federal highway and transportation jurisdictions.
- Evaluate and select standard roadway cross-sections appropriate to meet classification, traffic volume and safety requirements.
- Propose appropriate roadway components related to aesthetics, environmental impact and cost, while considering pedestrians, cyclists, emergency vehicles, transit users, and utilities.
- Design geometric elements of horizontal and vertical road alignments, incorporating appropriate design criteria, guidelines and best practices for low speed and high speed urban and rural design domains.
- Discuss the goals and types of roadway drainage systems and describe their major components.
- Discuss environmental, social, and economic issues typically encountered within transportation systems related to alternate and mixed modes and users.
- Describe the design and general construction process undertaken for highway projects.
- Calculate and balance earthwork volumes and construct mass haul diagrams.
- Analyse and design intersections to meet required capacity, safety, physical constraints, and aesthetics.

Week	Topics (Lecture)	Topics (Lab)
1	Course overview	No lab this week
	Introduction to Transportation Engineering	
2	Design Considerations / Classification of	Level of service / Traffic flow / Speed, flow
	<u>Highways</u> – Design parameters,	and density
	regulations, classification of highways	
3	Design Parameters - Design vehicles	Sight distance / Design vehicles
	Design Parameters - Sight distance	
4	Geometric design - Cross section design	Cross section considerations / Capacity
	Design Parameters - Capacity and level of	and Level of Service
	service	
5	Design Parameters - Capacity and level of	Capacity and Level of Service
5	service	
6	Geometric Design – Horizontal Alignment	Horizontal alignment (circular curves)
	(circular curves)	
	Review for Mid-term	
7	Reading Break (no lectures or labs)	
8	Mid-term Exam	Civil 3D – Introduction
9	Geometric Design – Horizontal Alignment	Horizontal alignment (circular and spiral
9	(circular and spiral curves)	curves)
10	Geometric Design – Horizontal Alignment	Horizontal alignment (circular and spiral
10	(spiral curves)	curves)
11	Geometric Design – Vertical Alignment	Vertical design
	Design considerations - Alignment	
	phasing and aesthetics (reading	
	assignment)	
12	Geometric Design – Design integration /	Design integration and earthworks
	Intersection design	balancing / Intersection design
13	Geometric Design - Intersection design	Earthworks balancing / Mass Haul

Course Content and Schedule

Week	Topics (Lecture)	Topics (Lab)	
	Design Considerations – Parking / Misc		
	topics		
14	Design Considerations - Drainage Design	Review for Final Exam	
15	Exam Week – Final Exam		

Notes:

- 1) This course schedule is subject to change. Please refer to the course website for updates.
- 2) For weeks without scheduled labs, lab time may be used for lectures, if required.
- 3) Each week a lab is held, it includes a corresponding lab assignment. Generally the lab is due the following week, unless noted otherwise.

Component	Weighting %	Comments		
Labs	20			
Mid-Term Exam	25	Open book		
Final Exam	50	Open book Must pass final exam to pass the course		
Instructor Assessment	5	Instructor assessment based upon attendance, cooperation, participation, not submitting plagiarized work, etc.		
TOTAL	100			

6 Basis of Student Assessment

7 Required Materials to Assist Students to Succeed Throughout the Course

- a) Texts:
 - 1. No text is required for this course.
 - 2. Handouts posted to course webpage
- b) Other (Recommended):
 - 1. Transportation Association of Canada (TAC), Geometric Design Guide for Canadian Roads, TAC, 2017, ISBN 1978-1-55187-614-6
 - 2. Kavanagh, Barry F., Surveying with Construction Applications, 8th Ed,Prentice-Hall, Toronto, 2015, ISBN-13: 9780132766982
 - 3. British Columbia. Ministry of Transportation (MOT), BC Supplement to TAC Geometric Design Guide. 2007 Ed., MOT, 2007, ISBN 978-0-7726-5800-5
 - 4. Additional reference material posted to course webpage

8 College Supports, Services and Policies

Immediate, Urgent, or Emergency Support

If you or someone you know requires immediate, urgent, or emergency support (e.g. illness, injury, thoughts of suicide, sexual assault, etc.), **SEEK HELP**. Resource contacts @ <u>http://camosun.ca/about/mental-health/emergency.html</u> or <u>http://camosun.ca/services/sexual-violence/get-support.html#urgent</u>

College Services

Camosun offers a variety of health and academic support services, including counselling, dental, disability resource centre, help centre, learning skills, sexual violence support &

education, library, and writing centre. For more information on each of these services, visit the **STUDENT SERVICES** link on the College website at <u>http://camosun.ca/</u>

College Policies

Camosun strives to provide clear, transparent, and easily accessible policies that exemplify the college's commitment to life-changing learning. It is the student's responsibility to become familiar with the content of College policies. Policies are available on the College website at http://camosun.ca/about/policies/. Education and academic policies include, but are not limited to, Academic Progress, Admission, Course Withdrawals, Standards for Awarding Credentials, Involuntary Health and Safety Leave of Absence, Prior Learning Assessment, Medical/Compassionate Withdrawal, Sexual Violence and Misconduct, Student Ancillary Fees, Student Appeals, Student Conduct, and Student Penalties and Fines.

9 Grading System

- Standard Grading System (GPA)
- □ Competency Based Grading System

See <u>Camosun Grading Policy E-1.5</u>

10 Class Policies

- Unless otherwise noted, assignments are due at the start of the applicable lecture or lab session.
- Late assignments will have 10% deducted. Assignments submitted after marked assignments have been returned to the class, or solutions posted, will be assigned a mark of 0.
- Unless otherwise noted, all assignments are to be completed individually.
- You must complete all assignments in order to qualify to write the Final Exam.
- Attendance for scheduled lectures and labs is included as part of the instructor assessment portion of your final grade. If you plan to miss a lecture or lab, you must contact the instructor prior to the session.
- You must achieve 50% on the final exam in order to pass the course. In addition, a weighted average of 50% on the mid-term and final exam must be achieved in order to pass the course.
- A mark of at least a C must be attained to gain credit for the purposes of continuing-on to courses for which this course is a pre-requisite.