

CAMOSUN COLLEGE Trades and Technology Mechanical Engineering Technology

> MENG 254 Machine Design Winter 2018

# **COURSE OUTLINE**

 The calendar description is available on the web @
 http://camosun.ca/learn/calendar/current/web/meng.html#MENG254

 $\Omega$  Please note: This outline will not be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

#### 1. Instructor Information

| (a) Instructor   | Derek Wakefield                                          |                                                                                                               |  |
|------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| (b) Office hours | M. Th. 12:30 – 1:20 PM, W.<br>Th. 10:30 AM – 12:20 PM, F | M. Th. 12:30 – 1:20 PM, W. 9:30 – 11:20 AM 1:30 – 3:20 PM,<br>Th. 10:30 AM – 12:20 PM, F. 11:30 AM – 12:20 PM |  |
| (c) Location     | TEC 111                                                  |                                                                                                               |  |
| (d) Phone        | 250-370-4505                                             | Alternative:                                                                                                  |  |
| (e) E-mail       | derekw@camosun.bc.ca                                     | -                                                                                                             |  |
| (f) Website      |                                                          |                                                                                                               |  |

### 2. Intended Learning Outcomes

Upon successful completion of this course, the student should be able to:

- 1. Graphically and analytically determine the maximum shear and principal stresses in a plane from the given stresses.
- 2. Determine the probability of failure according to various failure theories.
- 3. Understand the principles behind fatigue and be able to estimate the lifetime of a part exposed to steady and alternating stresses.
- 4. Design shafts to handle the applied loads under a variety of applications.
- 5. Determine the correct screw thread to use for certain applications requiring pre-tensioning or transmission of power.
- 6. Determine the correct plain bearing and lubricant for a particular application based on the environment and loading of the bearing.
- 7. Specify the correct type and number of V-belts to satisfy a particular machine design and estimate the shaft centre distance and lifetime of the belts.

### 3. Required Materials

(a) Texts

Machine Elements in Mechanical Design Mott, Vavrek and Wang, 6th Edition, Pearson Publishing

(b) Other

### 4. Course Content and Schedule

#### Outline:

|       |                                                      | Estimated Hours |
|-------|------------------------------------------------------|-----------------|
| 1.    | Principal Stresses and Stress Transformation         | 5               |
|       | Mohr's Circle                                        |                 |
|       | Stress Transformation                                |                 |
|       | Principal Stresses                                   |                 |
|       | Maximum Shear Stress                                 |                 |
| 2.    | Static Failure Theories                              | 5               |
|       | Types of Static Failures                             |                 |
|       | Static Failure Theories                              |                 |
|       | Geometric Stress-Concentration Factors               |                 |
| З.    | Designing for Fatigue                                | 5               |
|       | Endurance Limit of Material, S-N Curves              |                 |
|       | Cumulative Fatigue                                   |                 |
| 4.    | Fatigue Diagrams                                     | 5               |
|       | Steady and Alternating Stresses                      |                 |
|       | Introduction to Fatigue Diagrams                     |                 |
|       | Stress-Concentration Factors                         |                 |
|       | Equivalent Static Stress                             |                 |
| 5.    | Shafting                                             | 5               |
|       | Power Transmitted; Maximum Static Shearing Stress    |                 |
|       | ASME Code for Shafting                               |                 |
|       | Transverse Shear Stress                              |                 |
|       | Fluctuating Loads on Shafts                          |                 |
|       | Mises-Hencky Theory for Failure                      |                 |
|       | Keys and Couplings                                   |                 |
| Midte | rm #1 – Covers Sections 1, 2, 3 and 4                | 2               |
| 6.    | Screwed Fasteners                                    | 8               |
|       | Standard Threads, Tolerancing                        |                 |
|       | Effect of Initial Tensioning and Fluctuating Loading |                 |
|       | Power Screw; Torque and Efficiency                   |                 |
|       | Stress Due to Impact Loading                         |                 |

| 7.      | Belt Drives                                             |              | 5  |
|---------|---------------------------------------------------------|--------------|----|
|         | Prime mover Size and Service Factor                     |              |    |
|         | Selection of Correct Size and Number of V-Belts         |              |    |
|         | Selection of Appropriate Sheave Size                    |              |    |
|         | Belt Tension and Lifetime                               |              |    |
| 8.      | Springs                                                 |              | 5  |
|         | Spring Materials and Wire Sizes                         |              |    |
|         | Torsion Bar Design                                      |              |    |
|         | Helical Compression and Tension Spring Design           |              |    |
|         | Helical Torsion Springs                                 |              |    |
| Midtern | n #2 – Covers Sections 5, 6 and 7                       |              | 2  |
| 9.      | Plain Bearings                                          |              | 5  |
|         | Viscous Shearing Stresses; Petroff's Bearing Equation   |              |    |
|         | Hydrodynamic Lubrication, Bearing Characteristic Curves | 6            |    |
|         | Temperature Rise in Plain Bearings                      |              |    |
|         | Zn/P curve; Bearing Materials                           |              |    |
|         | Construction of Bearing                                 |              |    |
| 10.     | Design of Gears                                         |              | 5  |
|         | Forces on Gear Teeth                                    |              |    |
|         | Stresses in Gear Teeth                                  |              |    |
|         | Gear Materials and Manufacture                          |              |    |
|         | Selection of Gear Material                              |              |    |
|         | Lifetime of a Gear Tooth, Gear, or Mating Pair of Gears |              |    |
| 11.     | Clutches and Brakes                                     |              | 8  |
|         | Introduction to Common Types of Bakes and Clutches      |              |    |
|         | Plate Clutches and Brakes                               |              |    |
|         | Disc Clutches                                           |              |    |
|         | Cone Clutches and Brakes                                |              |    |
|         | Drum Clutches and Brakes                                |              |    |
|         | Band Clutches and Brakes                                |              |    |
|         | Energy Absorption and Heat Dissipation                  |              |    |
|         | Design Examples Involving Translation and Rotation      |              |    |
|         |                                                         |              |    |
|         |                                                         | Total Hours: | 65 |

#### 5. Basis of Student Assessment (Weighting)

(Should be directly linked to learning outcomes.)

- (a) Assignments 20% Laboratories 10%
- (b) Quizzes
- (c) Midterm #1 20% Midterm #2 20% Final Exam 30%
- (d) Other (e.g. Project, Attendance, Group Work)

### 6. Grading System

(If any changes are made to this part, then the Approved Course description must also be changed and sent through the approval process.) (Mark with "X" in box below to show appropriate approved grading system – see last page of this template.)

X Standard Grading System (GPA)

|  |  | _ |
|--|--|---|
|  |  |   |
|  |  |   |

Competency Based Grading System

7. Recommended Materials to Assist Students to Succeed Throughout the Course

### 8. College Supports, Services and Policies



#### Immediate, Urgent, or Emergency Support

If you or someone you know requires immediate, urgent, or emergency support (e.g. illness, injury, thoughts of suicide, sexual assault, etc.), **SEEK HELP**. Resource contacts @ <u>http://camosun.ca/about/mental-health/emergency.html</u> or <u>http://camosun.ca/services/sexual-violence/get-support.html#urgent</u>

#### **College Services**

Camosun offers a variety of health and academic support services, including counselling, dental, disability resource centre, help centre, learning skills, sexual violence support & education, library, and writing centre. For more information on each of these services, visit the **STUDENT SERVICES** link on the College website at <u>http://camosun.ca/</u>

#### **College Policies**

Camosun strives to provide clear, transparent, and easily accessible policies that exemplify the college's commitment to life-changing learning. It is the student's responsibility to become familiar with the content of College policies. Policies are available on the College website at <a href="http://camosun.ca/about/policies/">http://camosun.ca/about/policies/</a>. Education and academic policies include, but are not limited to, Academic Progress, Admission, Course Withdrawals, Standards for Awarding Credentials, Involuntary Health and Safety Leave of Absence, Prior Learning Assessment, Medical/Compassionate Withdrawal, Sexual Violence and Misconduct, Student Ancillary Fees, Student Appeals, Student Conduct, and Student Penalties and Fines.

### A. GRADING SYSTEMS <u>http://camosun.ca/about/policies/index.html</u> The

following two grading systems are used at Camosun College:

1. Standard Grading System (GPA)

| Percentage | Grade | Description                          | Grade Point<br>Equivalency |
|------------|-------|--------------------------------------|----------------------------|
| 90-100     | A+    |                                      | 9                          |
| 85-89      | A     |                                      | 8                          |
| 80-84      | A-    |                                      | 7                          |
| 77-79      | B+    |                                      | 6                          |
| 73-76      | В     |                                      | 5                          |
| 70-72      | B-    |                                      | 4                          |
| 65-69      | C+    |                                      | 3                          |
| 60-64      | С     |                                      | 2                          |
| 50-59      | D     |                                      | 1                          |
| 0-49       | F     | Minimum level has not been achieved. | 0                          |

#### 2. Competency Based Grading System (Non GPA)

This grading system is based on satisfactory acquisition of defined skills or successful completion of the course learning outcomes

| Grade | Description                                                                                                                                                     |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                 |
| СОМ   | The student has met the goals, criteria, or competencies established for this course, practicum or field placement.                                             |
| DST   | The student has met and exceeded, above and beyond expectation, the goals, criteria, or competencies established for this course, practicum or field placement. |
| NC    | The student has not met the goals, criteria or competencies established for this course, practicum or field placement.                                          |

## **B.** Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy at <u>http://www.camosun.bc.ca/policies/E-1.5.pdf</u> for information on conversion to final grades, and for additional information on student record and transcript notations.

| Temporary<br>Grade | Description                                                                                                                                                                                                                                                                                          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I                  | <i>Incomplete</i> : A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.                                                                                                   |
| IP                 | <i>In progress</i> : A temporary grade assigned for courses that are designed to have<br>an anticipated enrollment that extends beyond one term. No more than two IP<br>grades will be assigned for the same course.                                                                                 |
| CW                 | <i>Compulsory Withdrawal</i> : A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement. |