ECET 261 Embedded Networking & Operating Systems

Hours: 2/3/0

Prerequisites: ECET 230 Object-Oriented Programming in Hardware, ECET 260 ARM Microcontrollers and the Internet of Things

Short description:

Students will be introduced to the Linux operating system for the Raspberry Pi. Students will compile the kernel and file systems from source and use them to control a robot. They will also cover multi-tasking and real-time operating systems (RTOS), as well as networking and web services.

Learning outcomes:

Upon successful completion of this course a student will be able to:

- differentiate between a real time operating system and a multi-tasking operating system;
- explain methods of inter-process communications;
- define deadlock and mutual exclusion;
- describe the effects of latency and delay;
- describe the difference between interrupts and polling;
- design interface software to computer peripheral hardware;
- modify and compile a current multi-tasking operating system from kernel sources using Linux;
- configure file systems for embedded control systems using Linux;
- design applications using a Raspberry Pi single-board computer;
- explain the layers of the TCP/IP stack and their implementation in devices;
- describe and use IPv4 and IPv6 protocols;
- design web services for embedded applications.

Course outline:

1. Introduction

- 1.1 Operating systems
 - 1.1.1 Embedded operating systems
 - 1.1.2 Unix like systems
 - 1.1.2.1 Linux
 - 1.1.2.2 BSD
 - 1.1.2.3 Solaris
 - 1.1.2.4 OSX
 - 1.1.3 Windows
 - 1.1.4 Other embedded OS es
- 1.2 Fundamental services

1 hour

2.	Multitasking			4 hours
	2.1 Cooperative multitasking			
	2.2	Pre-er	nptive multitasking	
	2.3	Real-ti		
	2.2	Proces	ss management and services	
	2.3	Concu		
	2.4	Сооре	erating processes	
	2.5	Inter-p	process communications	
	2.6	Inter-p	processor communications	
	2.7	Proces	ss synchronization	
3.	System design considerations			4 hours
	3.1	Mutua		
	3.2	Deadlock		
	3.3	Starva		
	3.4	Latend		
	3.5	User i		
4.	Resource Sharing			3 hours
	4.1	Interru		
	4.2	Polling	5	
	4.3	Memory and device sharing		
	4.4	Buffering techniques		
5.	Embedded Linux			3 hours
	5.1	Linux		
	5.2	Comp	iling the kernel	
	5.3	Buildir	ng a root file system	
	5.4	Linux	boot disk	
6.	Raspberry Pi and Linux on ARM			4 hours
	6.1	Buildir	ng an image for an embedded ARM device	
	6.2	Configuring Raspberry Pi WiFi		
	6.3	Remo		
		6.3.1	Command line	
		6.3.2	Graphical	
	6.4	Robots with ARM		
		6.4.1	Review of USB ¹	
		6.4.2	5	
		6.4.2	Interfacing with STM32F4Discovery board	
7.	Networking			5 hours
	7.1 Full TCP/IP stack ²		-	
		7.1.1	Masking	
		7.1.2	Devices	
			7.1.2.1 Hubs	
			7.1.2.2 Switches	
			7.1.2.3 Routers	

- 7.1.2.4 Nodes
- 7.2 IPv4
 - 7.2.1 Classes of network
 - 7.2.2 Classless addressing
- 7.3 IPv6
- 7.4 Web services
 - 7.4.1 Dynamic HTML
 - 7.4.2 Javascript
 - 7.4.3 Cascading style sheets (CSS)

Tests and review **Total**

4 hours **28 hours**

Notes:

¹ USB architecture, protocols and classes could be covered in ECET 260 ARM Microcontrollers and the Internet of Things.

² An introduction to the TCP/IP stack was provided in ECET 260 ARM Microcontrollers and the Internet of Things.

Labs:

- 1. Raspberry Pi
- 2. Boot loaders
- 3. Operating system introduction (Linux)
- 4. Processes /Threads
- 5. Signals / Alarms
- 6. Controlling Hardware (root)
- 7. Controlling Hardware (modules)
- 8. Linux / Embedded Linux
- 9. Linux on Arm
- 10. USB Interfacing
- 11. Robot
- 12. Cloud Services / Servers

Textbooks: None

Reference: Handouts as required. Online references as required.

Evaluation:

Lecture:

Term Tests (2-3) 60 Total Lecture Marks 60

Lab:

Total Lab Marks 40 Total 100

A minimum grade of "C" is required in order to continue on to courses for which

this is a pre-requisite. To obtain at least a C grade:

• The student must obtain a composite mark of at least 60% with a minimum of 60% in theory and 60% in labs.

• ALL lab exercises must be completed to a "satisfactory" level. Failure

to do so in a timely* manner will result in a grade of "F" for the

course. (*Absolute deadline for completion of all lab exercises will be announced.)