

CAMOSUN COLLEGE School Department

ECET220 Industrial Electronics for Renewable Energy

Winter 2018

COURSE OUTLINE

The calendar description is available on the web $\ensuremath{\mathbb{Q}}$

http://camosun.ca/learn/calendar/current/web/ecet.html

 Ω Please note: This outline will not be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

1. Instructor Information

- (a) Instructor Ian Browning
- (b) Office hours Refer to D2L schedule
- (c) Location TEC267
- (d) Phone 370-4015

(e) E-mail browning@camosun.ca

(f) Website

(f) Website <u>https://online.camosun.ca/</u>

Pre-requisites C in ECET 242

2. Intended Learning Outcomes

Students will focus on power devices and power systems for renewable energy. They will study three-phase power, the "smart grid," DC and AC motors and generators, power devices such as IGBTs and thyristors, DC-DC converters, inverters, controlled rectifiers, and DC and AC motor drives. Students will apply this to wind and solar energy systems and electric cars.

Alternative:

Upon successful completion of this course a student will be able to:

- describe the characteristics and operation of power control devices;
- draw the characteristic curves of power control devices;
- classify power devices according to speed, power and control type;
- interpret power device specifications and specify power devices for a given application;
- calculate power device losses and heat-sink requirements;
- explain the fundamental concepts of three phase power systems and grid-tying;

Template Published by Educational Approvals Office (VP Ed Office) Page 1 of 6

- describe the operation of AC and DC motors/generators; •
- describe the operation of inverter circuits; •
- describe the operation of controlled rectifier circuits; •
- describe the operation of circuits involving power diodes, thyristors and controlled switches;
- describe the operation of DC and AC motor drives;
- outline strategies for power device protection and isolation;
- draw waveforms for industrial electronics circuits;
- perform calculations to determine suitable component values for power circuits; •
- explain the operation of control circuits for power control devices; •
- apply a DC-DC converter for maximum power point tracking (MPPT); •
- explain the use of chopper circuits and inverters for photovoltaic power conversion;
- outline the use of an H-bridge circuit in regenerative systems.

3. Required Materials

(a) Text (Optional)	Title: Publisher: Author:	Electronic devices and circuits Oxford University Press Bell, David A.

- (b) Other (Recommended) Access to a PC.
- (c) Course materials from D2L site

4. Course Content and Schedule (Subject to change)

C	ourse H	lours	Lecture: 3hrs/wk	Lab: 2.5hrs/wk	Duration: 14	weeks
1.	Introdu 1.1 1.2 1.3 1.4 1.5	The po Grid co Three- Distribu	ower grid and three-phas omponents phase calculations uted vs. centralized rene mart grid"	·		3 hours
2.	DC mo 2.1 2.2 2.3	Electro Electric	d generators omagnetics review c machine physical cons , shunt and compound w			3 hours
3.	AC gei 3.1 3.2 3.3	Three-	s phase induction generat phase synchronous gen nch and grid tie for wind	erators		3 hours
Templa	te Publishe	d by Educ	ational Approvals Office (VP I Pa	Ed Office) ge 2 of 6	1	12/18/2017

4.	AC motors34.1Three-phase induction motors4.2Three-phase synchronous motors4.3Single-phase motors	hours
5.	Power electronics 3 5.1 Basic concepts 5.2 Power devices 5.2.1 Power diodes 5.2.3 Controlled switches: BJT, MOSFET, IGBT 5.3 Switching characteristics and snubbers	hours
	5.4 Drive circuits and isolation	
6.	DC-DC converters36.1Buck, boost and buck-boost6.2Application to PV charging systems6.3Maximum power point tracking (MPPT)	hours
7.	Inverters and AC motor drives37.1Single-phase inverters7.2Three-phase inverters7.3Three-phase and PM DC motor control application7.4Use of inverters in grid-tied PV systems	hours
8.	DC motor drives38.1Basic "chopper" circuit8.2Half bridge8.3Full H bridge8.4Regenerative systems	hours
9.	Thyristor power devices39.1Thyristor devices (SCR, TRIAC, DIAC, GTO)9.2Solid-state relays	hours
10.	Controlled rectifiers310.1Operation of controlled rectifiers10.2DC motor control applications	hours
11.	Renewable energy (RE) systems311.1Further applications of power electronics in RE11.2Case studies1	hours
12.	Series/parallel devices 1	hour
13.	Thermal considerations 1	hour
Tests a Total		′ hours 2 hours

Lab Topics (Subject to change)

- 1. Introduction to Lab-Volt (equipment use, lab safety, power theory review)
- 2 Three phase systems (Lab-Volt)
- 3. DC motor (Lab-Volt)
- 4. AC generator/motor (Lab-Volt)
- 5. Reverse recovery time of diodes
- 6 PWM choppers and IGBTs
- 7. DC-DC converters
- 8. DC-DC converter MPPT
- 9. Single-phase inverter
- 10. Three-phase inverter
- 11. H-bridge motor control
- 12. SCR motor control
- 13. Solid state relay
- 14. TRIAC/DIAC control

5. Basis of Student Assessment (Weighting)

Exams:	Mid-term1:	20%	Note:
	Mid-term2:	20%	 Lab and lecture portions MUST be passed individually.
	Final:	30%	 Late penalties of 10% per day will be applied at the
Labs:		30%	instructor's discretion.
Lab5.		5070	 Lab attendance is MANDATORY. Failure to attend sufficient labs will result in an F grade
			 Lab grades will not be awarded for missed labs without a valid reason for absence

6. Grading System

Standard Grading System (GPA)

Competency Based Grading System

7. Recommended Materials to Assist Students to Succeed Throughout the Course

Refer to D2L course page and D2L news-feed items.

8. College Supports, Services and Policies

Immediate, Urgent, or Emergency Support

If you or someone you know requires immediate, urgent, or emergency support (e.g. illness, injury, thoughts of suicide, sexual assault, etc.), **SEEK HELP**. Resource contacts @ <u>http://camosun.ca/about/mental-health/emergency.html</u> or <u>http://camosun.ca/services/sexual-violence/get-support.html#urgent</u>

College Services

Camosun offers a variety of health and academic support services, including counselling, dental, disability resource centre, help centre, learning skills, sexual violence support & education, library, and

writing centre. For more information on each of these services, visit the **STUDENT SERVICES** link on the College website at <u>http://camosun.ca/</u>

College Policies

Camosun strives to provide clear, transparent, and easily accessible policies that exemplify the college's commitment to life-changing learning. It is the student's responsibility to become familiar with the content of College policies. Policies are available on the College website at http://camosun.ca/about/policies/. Education and academic policies include, but are not limited to, Academic Progress, Admission, Course Withdrawals, Standards for Awarding Credentials, Involuntary Health and Safety Leave of Absence, Prior Learning Assessment, Medical/Compassionate Withdrawal, Sexual Violence and Misconduct, Student Ancillary Fees, Student Appeals, Student Conduct, and Student Penalties and Fines.

A. GRADING SYSTEMS <u>http://camosun.ca/about/policies/education-</u>

academic/e-1-programming-and-instruction/e-1.5.pdf

The following two grading systems are used at Camosun College:

Percentage	Grade	Description	Grade Point Equivalency
90-100	A+		9
85-89	A		8
80-84	A-		7
77-79	B+		6
73-76	В		5
70-72	B-		4
65-69	C+		3
60-64	С		2
50-59	D		1
0-49	F	Minimum level has not been achieved.	0

1. Standard Grading System (GPA)

2. Competency Based Grading System (Non GPA)

This grading system is based on satisfactory acquisition of defined skills or successful completion of the course learning outcomes

Grade	Description
СОМ	The student has met the goals, criteria, or competencies established for this course, practicum or field placement.
DST	The student has met and exceeded, above and beyond expectation, the goals, criteria, or competencies established for this course, practicum or field placement.
NC	The student has not met the goals, criteria or competencies established for this course, practicum or field placement.

B. Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy at http://www.camosun.bc.ca/policies/E-1.5.pdf for information on conversion to final grades, and for additional information on student record and transcript notations.

Temporary Grade	Description
I	<i>Incomplete</i> : A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.
IP	<i>In progress</i> : A temporary grade assigned for courses that are designed to have an anticipated enrollment that extends beyond one term. No more than two IP grades will be assigned for the same course.
CW	<i>Compulsory Withdrawal</i> : A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement.