

CAMOSUN COLLEGE School of Arts & Science Department of Chemistry & Geoscience

> CHEM-213-001A/B Molecular Spectroscopy Winter 2019

COURSE OUTLINE

The course description is online @ http://camosun.ca/learn/calendar/current/web/chem.html

 Ω Please note: This outline will <u>not</u> be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

1. Instructor Information

(a) InstructorDr. Steve McKinnon(b) Office hoursSee schedule or by appointment(c) LocationFisher 348A(d) Phone250-370-3472

(e) E-mailmckinnons@camosun.bc.ca(f) WebsiteD2L

2. Intended Learning Outcomes

Upon completion of this course the student will be able to:

- 1. Describe and explain the production of the various types of electromagnetic radiation and derive and use the laws of absorption spectroscopy.
- 2. Associate a nuclear, atomic or molecular process with the absorption of radiation of a particular frequency.
- 3. Describe the Boltzmann distribution of energy and explain its importance in spectroscopic experiments.
- 4. Explain the results of the photoelectronic experiments and interpret the spectrum in terms of bonding and non-bonding molecular orbitals.
- 5. Describe and explain the processes of absorption and emission in organic and inorganic compounds and comment on the link between the features of a spectrum and the presence of particular structural features in the compound.
- 6. Describe and explain the behaviour of diatomic molecules in terms of the simple harmonic oscillator model and derive the number of modes of vibration for linear and non-linear polyatomic molecules.
- Comment on the features of an IR spectrum in terms of the presence or absence of a particular functional group and analyze the pure rotational spectra to determine the bond length of the molecules using the rigid rotor model.
- 8. Describe the different ways in which the molecular mass is determined and calculate isotope splitting patterns based on the known isotopic ratios in nature.
- Describe the absorption of radiation by the hydrogen-1, carbon-13, fluorine-19, and phosphorous-31 nuclei and deduce the chemical structures of compounds containing these nuclei using tables of chemical shifts, known reference materials and coupled and decoupled spectra.

3. Required Materials

"Chemistry 213 Laboratory Manual and Study Guide" by C.G.C. Shorthill and N. Khalifa

Recommended:

"Organic Structures from Spectra", by Field, Sternhell, and Kalman

"Introduction to Spectroscopy", by Pavia, Lampman, Kriz, and Vyvyan

4. Course Content and Schedule

Topics and approximate number of lecture hours

Introduction to Spectroscopy (3)	¹ HNMR Spectroscopy (8)
Electronic Spectroscopy (5)	¹³ CNMR Spectroscopy (4)
IR and Structure (6)	Heteronuclear NMR (3)
Vibrational and Rotational Theory (5)	2D NMR Spectroscopy (3)
Nuclear Magnetic Resonance (3)	Mass Spectrometry (3)

Important Dates

Feb 13 (Wed): **Test I in Lab** Feb 18-22: Reading Break Mar 27 (Wed): **Test II in Lab** Apr 19 (Fri): Good Friday Apr 22 (Mon): Easter Monday

Final Exam Period: April 15-18 and 23-26

See Camosun website for information on fee and drop deadlines. <u>http://camosun.ca/learn/fees/#deadlines</u>

5. Basis of Student Assessment (Weighting)

(a)	Midterm 1	(L.O. 1-7)	15%
(b)	Midterm 2	(L.O. 5,7,9)	20%
(c)	Final Exam	(Cumulative)	40%
(d)	Laboratory/tutorial		25%

Notes

- 1. Students must complete a minimum of 70% of the laboratory/tutorial work to pass the laboratory component of Chem 213. Students must pass the laboratory/tutorial portion (>50%) of the course in order to obtain credit for Chem 213.
- 2. Students must write each test as scheduled. No one is allowed to write late and there will be no exceptions. Early exam is a privilege and not a right, at full discretion of the instructor.

6. Grading System

X

Standard Grading System (GPA)

Competency Based Grading System

7. Recommended Materials to Assist Students to Succeed Throughout the Course

n/a

8. College Supports, Services and Policies

Immediate, Urgent, or Emergency Support

If you or someone you know requires immediate, urgent, or emergency support (e.g. illness, injury, thoughts of suicide, sexual assault, etc.), **SEEK HELP**. Resource contacts @ <u>http://camosun.ca/about/mental-health/emergency.html</u> or <u>http://camosun.ca/services/sexual-violence/get-support.html#urgent</u>

College Services

Camosun offers a variety of health and academic support services, including counselling, dental, disability resource centre, help centre, learning skills, sexual violence support & education, library, and writing centre. For more information on each of these services, visit the **STUDENT SERVICES** link on the College website at <u>http://camosun.ca/</u>

College Policies

Camosun strives to provide clear, transparent, and easily accessible policies that exemplify the college's commitment to life-changing learning. It is the student's responsibility to become familiar with the content of College policies. Policies are available on the College website at http://camosun.ca/about/policies/. Education and academic policies include, but are not limited to, Academic Progress, Admission, Course Withdrawals, Standards for Awarding Credentials, Involuntary Health and Safety Leave of Absence, Prior Learning Assessment, Medical/Compassionate Withdrawal, Sexual Violence and Misconduct, Student Ancillary Fees, Student Appeals, Student Conduct, and Student Penalties and Fines.

A. GRADING SYSTEMS http://camosun.ca/about/policies/index.html

The following two grading systems are used at Camosun College:

Percentage	Grade	Description	Grade Point Equivalency
90-100	A+		9
85-89	А		8
80-84	A-		7
77-79	B+		6
73-76	В		5
70-72	B-		4
65-69	C+		3
60-64	С		2
50-59	D		1
0-49	F	Minimum level has not been achieved.	0

1. Standard Grading System (GPA)

2. Competency Based Grading System (Non GPA)

This grading system is based on satisfactory acquisition of defined skills or successful completion of the course learning outcomes

Grade	Description
СОМ	The student has met the goals, criteria, or competencies established for this course, practicum or field placement.
DST	The student has met and exceeded, above and beyond expectation, the goals, criteria, or competencies established for this course, practicum or field placement.
NC	The student has not met the goals, criteria or competencies established for this course, practicum or field placement.

B. Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy at http://camosun.ca/about/policies/index.html for information on conversion to final grades, and for additional information on student record and transcript notations.

Temporary Grade	Description
I	<i>Incomplete</i> : A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.
IP	<i>In progress</i> : A temporary grade assigned for courses that are designed to have an anticipated enrollment that extends beyond one term. No more than two IP grades will be assigned for the same course.
CW	<i>Compulsory Withdrawal:</i> A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement.

CHEM 213 LABORATORY SCHEDULE: (Preliminary only - Subject to Change)

Week/date			Experiment
I	Jan 9	Exp. 1	General spectroscopy
II	Jan 16	Exp. 2	Absorption Spectra of an Acid-Base Indicator
III	Jan 23	Exp. 3	Sampling techniques in IR spectroscopy
IV	Jan 30	Exp. 4	Infrared spectroscopy part 1 Interpretation of IR spectra of organic compounds
V	Feb 6	Exp. 5	Infrared spectroscopy part 2 Gas phase IR spectra of diatomic molecules
VI	Feb 13	Midterm Test 1	
VII	Feb 20	Reading Break	
VIII	Feb 27	Exp. 6a	¹ H NMR spectroscopy Part 1
IX	Mar 6	Exp. 6b	¹ H NMR spectroscopy Part 2
Х	Mar 13	Exp. 7a	¹³ C NMR spectroscopy
XI	Mar 20	Exp. 7b	Organic Multinuclear NMR
XII	Mar 27	Midterm Te	st 2
XIII	Apr 3	Exp. 8	Multinuclear and 2D NMR
XIV	Apr 10	Exp. 9	Structural determination The use of UV / IR / NMR and MS spectra