

CAMOSUN COLLEGE School of Arts & Science Department of Physics & Astronomy

PHYS-141-002 Physics for Science/ENGR 2 Winter 2018

COURSE OUTLINE

The course description is available on the web @ http://camosun.ca/learn/calendar/current/web/phys.html

 Ω Please note: This outline will not be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

1. Instructor Information

(a)	Instructor	Stephanie LaForest		
(b)	Office hours	Monday- Friday 12:30-1:20 pm		
(c)	Location	F346C		
(d)	Phone	250-370-3513	Alternative:	
(e)	E-mail	LaforestS@camosun.bc.ca		
(f)	Website	D2L (online.camosun.ca)		

2. Intended Learning Outcomes

Upon completion of the course the student will be able to:

- Examine common physical systems subject to periodic motion and study the propagation of waves on strings and in air columns.
 - a. Identify defining features of systems undergoing Simple Harmonic Motion and solve technical problems for such systems.
 - Define and describe the following properties of waves: period, frequency, wave speed, and amplitude.
 - State the principal of superposition and understand the properties of waves undergoing constructive and destructive interference.
 - d. Compare and contrast wave propagation on strings and in air columns including wave speed dependence on medium characteristics.
 - e. Solve problems involving the Doppler effect.
 - f. State the conditions for standing waves and identify nodes and anti-nodes. Solve problems of vibrating strings and air columns, including fundamental nodes and harmonics.
- Investigate laws of geometric optics and use them to understand and characterize image formation in mirrors and lenses.
 - a. State laws of reflection and refraction and apply laws to calculate paths of light rays at interfaces between materials.
 - b. Solve technical problems involving dispersion and total internal reflection as special applications of refraction.
 - c. Solve technical problems involving image formation with spherical mirrors, lenses and simple optical devices, including ray diagrams.
- Apply the wave model of light to study and describe physics optics experiments involving interference and diffraction of light.
 - a. Solve technical problems associated with the effects of light interference.
 - Study experiments and applications that rely on interference of light including Young's double-slit, diffraction gratings, thin film interference and the Michelson Interferometer.

- c. State and explore the First and Second Laws of Thermodynamics through investigations into heat transfer, calorimetry and analyses of heat engines. Solve technical problems involving linear and volume expansion of solids and liquids in response to temperature changes.
- d. Apply concepts of specific and latent heat to solve technical calorimetry problems including systems undergoing phase changes.
- e. Describe fundamental mechanisms of heat transfer.
- f. Apply the Ideal Gas Law and the First Law of Thermodynamics to analyze simple heat engines.
- g. Apply the concept of entropy and the Second Law of Thermodynamics to describe limits to the efficiency of heat engines.
- Examine and solve problems using key theories of modern physics including relativity, the structure of matter, and radioactivity.
 - a. Outline the key principles of Einstein's Theory of Special Relativity. Solve technical problems involving coordinate transformations, relativity of length and time intervals, relativistic energy and momentum.
 - b. Outline key ideas of quantum theory including wave-particle duality and the Heisenberg uncertainty principle.
 - c. Solve technical problems involving the photoelectric effect, Compton scattering and pair production and the Heisenberg Uncertainty Principle.
 - d. Describe the Bohr model of the atom and the nature of radioactivity.
- 5. Examine the validity of key physical principles through the use of practical experimental techniques.
 - a. Assemble experimental apparatus using written instructions.
 - b. Observe and record data including sources of error and estimate the range of uncertainty in results.
 - c. Interpret meaning of experimental results in the context of the experimental objectives.
 - d. Write scientific reports in correct format.

3. Required Materials

- (a) Texts: Physics for Scientists and Engineers, 4th Edition, Knight, R.D.
- (b) Other: Physics 140/141 Laboratory Manual, Scientific Calculator, Ruler

4. Course Content and Schedule

Lecture: Monday- Thursday 1:30 pm- 2:20 pm F316 Lab: Friday 1:30 am- 3:20 pm F316

5. Basis of Student Assessment (Weighting)

(a) Homework: 5% (b) Quizzes: 5% (b) Lab Reports: 15%

(c) Lab Exam: 5 % (d) Term Tests: 30% (e) Final Exam: 40 %

Tests are scheduled as follows:

Test #1: Friday Feb. 2nd, Test #2: Friday Mar. 9th, Test #3: Friday April 6th, Lab Exam: Friday April 13th

INSTRUCTOR SPECIFIC POLICIES

- Homework problems will be mainly assigned from the textbook. They will be due at the end of the day on Friday
 of each week.
- 2. Short weekly quizzes will be similar to the multiple choice problems posted on D2L.
- 3. Labs for a particular week will be due by the end of the day one week following the lab. Each student is allowed one dropped or missed lab.

- Please refer to the D2L website regularly for important announcements and an up-to-date calendar with due dates and test dates.
- 5. Missed tests and labs will only be excused if I am contacted within 24 hours of the absence and with proper supporting documentation provided (counselor's note, doctor's note, etc...). Otherwise, a mark of zero will be assigned.

PHYSICS DEPARTMENT POLICIES REGARDING TESTING:

- The final exam will cover the entire course and will be 3 hours long. As stated in the current college calendar on page 39, "students are expected to write tests and final exams at the scheduled time and place." Exceptions will only be considered due to emergency circumstances as outlined in the calendar. Holidays or scheduled flights are not considered to be emergencies.
- 2. Students must write quizzes, tests, midterm tests, etc., on the date and time assigned by the instructor. Missed exams normally receive a zero grade. Instructors are not required to provide make-up tests. At their discretion, instructors may waive a test in exceptional circumstances such as medical issues or a documented illness.

PHYSICS DEPARTMENT POLICIES REGARDING LABS:

- 1. Lab attendance is mandatory you cannot complete a lab using someone else's data and you may be required to "sign in" at the beginning of each lab period. A lab may be waived or made up at a later time only in the case of documented illness or other extenuating circumstances. If you will be absent from a lab period due to illness it is your responsibility to notify your instructor.
- 2. Unless otherwise stated by your instructor late penalties are as follows: For overdue labs (or assignments), a late penalty of 1 mark per day (10%) will be assessed for the first five days following the due date. After this date a complete report earns a maximum mark of 50%.
- 3. At the discretion of the instructor, a student who is repeating this Physics course may apply for lab exemption.

6. Grading System

X	Standard Grading System (GPA)
	Competency Based Grading System

7. Recommended Materials to Assist Students to Succeed Throughout the Course

Please come by my office hours if you have questions while studying, and feel free to email me to set up an appointment to meet outside of my set times.

8. College Supports, Services and Policies

Immediate, Urgent, or Emergency Support

If you or someone you know requires immediate, urgent, or emergency support (e.g. illness, injury, thoughts of suicide, sexual assault, etc.), **SEEK HELP**. Resource contacts @ http://camosun.ca/about/mental-health/emergency.html or http://camosun.ca/services/sexual-violence/get-support.html#urgent

College Services

Camosun offers a variety of health and academic support services, including counselling, dental, disability resource centre, help centre, learning skills, sexual violence support & education, library,

and writing centre. For more information on each of these services, visit the **STUDENT SERVICES** link on the College website at http://camosun.ca/

College Policies

Camosun strives to provide clear, transparent, and easily accessible policies that exemplify the college's commitment to life-changing learning. It is the student's responsibility to become familiar with the content of College policies. Policies are available on the College website at http://camosun.ca/about/policies/. Education and academic policies include, but are not limited to, Academic Progress, Admission, Course Withdrawals, Standards for Awarding Credentials, Involuntary Health and Safety Leave of Absence, Prior Learning Assessment, Medical/Compassionate Withdrawal, Sexual Violence and Misconduct, Student Ancillary Fees, Student Appeals, Student Conduct, and Student Penalties and Fines.

A. GRADING SYSTEMS http://camosun.ca/about/policies/index.html

The following two grading systems are used at Camosun College:

1. Standard Grading System (GPA)

Percentage	Grade	Description	Grade Point Equivalency
90-100	A+		9
85-89	Α		8
80-84	A-		7
77-79	B+		6
73-76	В		5
70-72	B-		4
65-69	C+		3
60-64	С		2
50-59	D		1
0-49	F	Minimum level has not been achieved.	0

2. Competency Based Grading System (Non GPA)

This grading system is based on satisfactory acquisition of defined skills or successful completion of the course learning outcomes

Grade	Description	
СОМ	The student has met the goals, criteria, or competencies established for this course, practicum or field placement.	
DST	The student has met and exceeded, above and beyond expectation, the goals, criteria, or competencies established for this course, practicum or field placement.	
NC	The student has not met the goals, criteria or competencies established for this course, practicum or field placement.	

B. Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy at http://camosun.ca/about/policies/index.html for information on conversion to final grades, and for additional information on student record and transcript notations.

Temporary Grade	Description
I	Incomplete: A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.
IP	In progress: A temporary grade assigned for courses that are designed to have an anticipated enrollment that extends beyond one term. No more than two IP grades will be assigned for the same course.
CW	Compulsory Withdrawal: A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement.