

COURSE OUTLINE

The course description is online @ http://camosun.ca/learn/calendar/current/web/math.html

 Ω Please note: the College electronically stores this outline for five (5) years only. It is **strongly recommended** you keep a copy of this outline with your academic records. You will need this outline for any future application/s for transfer credit/s to other colleges/universities.

1. Instructor Information

(a)	Instructor:			
(b)	Office Hours:			
(C)	Location:			
(d)	Phone:	GFE DE	Alternative Phone:	
(e)	Email:			
(f)	Website:			

2. Intended Learning Outcomes

(<u>No</u> changes are to be made to these Intended Learning Outcomes as approved by the Education Council of Camosun College.)

Upon completion of this course the student will be able to:

- 1. Establish the equivalence of compound propositions using truth tables and basic laws of logic.
- 2. Use rules of inference to determine the validity of arguments.
- 3. Translate English statements into quantified logic statements and vice versa.
- Prove statements using direct and indirect proofs and ordinary and strong mathematical induction.
- 5. Prove set equivalences using membership, basic set identities and logical equivalences.
- 6. Determine whether functions are surjective, injective or bijective.
- 7. Compare the cardinality of finite and infinite sets through the use of bijections and distinguish between countable and uncountable sets.
- 8. Describe the growth of functions using big-O, big-Omega and big-Theta notation.
- 9. Solve problems using the fundamental concepts of number theory and perform simple proofs involving divisibility, prime factorization and congruences.
- 10. Use the Euclidean algorithm to find greatest common divisors and use other algorithms to convert numbers between different bases.
- 11. Define functions and sequences recursively.
- 12. Use permutations and combinations to solve counting and probability problems, including those in which repetition is allowed.
- 13. Apply the pigeonhole principle to solve counting problems.
- 14. Prove identities involving the binomial theorem using both algebraic and combinatorial arguments.
- 15. Model counting problems using recurrence relations.
- 16. Solve divide and conquer recurrence relations for n=bk and give big-O estimates for increasing functions.
- 17. Identify and describe different types of graphs and their connectivity.

3. Required Materials

(a) Texts

(b) Other

4. Course Content and Schedule

(This section can include: class hours, lab hours, out of class requirements and/or dates for quizzes, exams, lectures, labs, seminars, practicums, etc.)

5. Basis of Student Assessment (Weighting)

(This section should be directly linked to the Intended Learning Outcomes.)

- (a) Assignments
- (b) Quizzes

(c) Exams

(d) Other (e.g., Attendance, Project, Group Work)

6. Grading System

(No changes are to be made to this section unless the Approved Course Description has been forwarded through the Education Council of Camosun College for approval.)

Standard Grading System (GPA)

Percentage	Grade	Description	Grade Point Equivalency		
90-100	A+		9		
85-89	A		8		
80-84	A-		7		
77-79	B+		6		
73-76	В		5		
70-72	B-		4		
65-69	C+		3		
60-64	С		2		
50-59	D	Minimum level of achievement for which credit is granted; a course with a "D" grade cannot be used as a prerequisite.	1		
0-49	F	Minimum level has not been achieved.	0		

Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy E-1.5 at **camosun.ca** for information on conversion to final grades, and for additional information on student record and transcript notations.

Temporary Grade	Description
I	<i>Incomplete</i> : A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.
IP	<i>In progress</i> : A temporary grade assigned for courses that, due to design may require a further enrollment in the same course. No more than two IP grades will be assigned for the same course. (For these courses a final grade will be assigned to either the 3 rd course attempt or at the point of course completion.)
cw	<i>Compulsory Withdrawal:</i> A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement.

7. Recommended Materials or Services to Assist Students to Succeed Throughout the Course

LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College calendar, at Student Services, or the College web site at camosun.ca.

STUDENT CONDUCT POLICY

There is a Student Conduct Policy **which includes plagiarism**. It is the student's responsibility to become familiar with the content of this policy.

ADDITIONAL COMMENTS AS APPROPRIATE OR AS REQUIRED

Mathematics 126 Basic Discrete Mathematics Winter, 2014

Instructor: Office: E-mail: Website: Telephone: Timetable: George Ballinger Ewing 256 <u>ballinger@camosun.bc.ca</u> <u>ballinger.disted.camosun.bc.ca</u> (click the <u>MATH 126</u> link for course information) (250) 370-3116

Time	Monday	Tuesday	Wednesday	Thursday	Friday	
8:30 am - 9:20 am	MATH 100-001 Room Y217					
9:30 am - 10:20 am						
10:30 am - 11:20 am						
11:30 am - 12:20 pm	MATH 126-001 Room Y217	MATH 126-001 Room Y217	MATH 126-001 Room Y217		MATH 126-001 Room Y217	
12:30 pm - 1:20 pm	Office Hour E256					
1:30 pm - 2:20 pm	MATH 100-002 Room Y217					

Important Dates:	January 6 January 20 February 10 February 13-14 March 10 April 11 April 14-17, 22-25	First day of class Tuition fee deadline Family Day (no class) Reading Break (no class) Withdrawal date deadline Last day of class Final exam period					
Prerequisites:	C in MATH 100 or MATH 110 or MATH 125.						
Exit grade:	D (50%) or better in MATH 126 will earn you transfer credit for UVic's MATH "Logic and Foundations" course, which is a prerequisite for several UVic cour and a requirement of many UVic major programs including:						

Courses	
MATH 212	MATH 236
"Introduction to Algebra"	"Introduction to Real Analysis"
MATH 222	CSC 225
"Discrete and Combinatorial Mathematics"	"Algorithms and Data Structures 1"

Programs	
Computer Science	Mathematics
Computer Science & Geography [Geomatics]	Mathematics & Chemistry
Computer Science & Health Information Science	Mathematics & Computer Science
Computer Science & Music	Mathematics & Education
Computer Science & Physics	Mathematics & Physics
Computer Science & Psychology	Mathematics & Statistics
Computer Science & Statistics	Software Engineering
Computer Science & Visual Arts	Statistics (honours)
Financial Mathematics & Economics	

Revised December 13, 2013

Page 1 of 4

Calendar Description:	This course, which primarily targets mathematics and computer science students, provides an introduction to discrete mathematics. Topics include logic, proof techniques including mathematical induction, basic set theory, functions, cardinality of sets, asymptotic notation, properties of integers, permutations and combinations, pigeonhole principle, recursive definitions, divide and conquer recurrence relations and a brief introduction to graphs. [3 Credits]					
	(Source: Camosun College 2013-2014 Calendar <u>camosun.ca/learn/calendar/current/web/math.html</u>)					
Required Textbook:	K.H. Rosen, Discrete Mathematics and Its Applications, Seventh Edition, McGra Hill, 2012.					
Course Content: Part A Rac Part A Rac Descrete Mathematics and a polications	Chapter 1 The Foundations: Logic and Proofs 1.1 Propositional Logic 1.2 Applications of Propositional Logic 1.3 Propositional Equivalences 1.4 Predicates and Quantifiers 1.5 Nested Quantifiers 1.6 Rules of Inference 1.7 Introduction to Proofs 1.8 Proof Methods and Strategy Chapter 2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices 2.1 Sets 2.2 Set Operations 2.3 Functions 2.4 Sequences and Summations					

- 2.4 Sequences and Summations2.5 Cardinality of Sets
- Chapter 3 Algorithms
 - 3.2 The Growth of Functions
- Chapter 4 Number Theory and Cryptography
 - 4.1 Divisibility and Modular Arithmetic
 - 4.2 Integer Representations and Algorithms
 - 4.3 Primes and Greatest Common Divisors
- Chapter 5 Induction and Recursion
 - 5.1 Mathematical Induction
 - 5.2 Strong Induction and Well-Ordering
 - 5.3 Recursive Definitions and Structural Induction
- Chapter 6 Counting
 - 6.1 The Basics of Counting
 - 6.2 The Pigeonhole Principle
 - 6.3 Permutations and Combinations
 - 6.4 Binomial Coefficients and Identities
 - 6.5 Generalized Permutations and Combinations
- Chapter 7 Discrete Probability
- 7.1 An Introduction to Discrete Probability
- Chapter 8 Advanced Counting Techniques
 - 8.1 Applications of Recurrence Relations
 - 8.3 Divide-and-Conquer Algorithms and Recurrence Relations
 - 8.5 Inclusion-Exclusion
- Chapter 10 Graphs
 - 10.1 Graphs and Graph Models
 - 10.2 Graph Terminology and Special Types of Graphs
 - 10.4 Connectivity
 - 10.5 Euler and Hamilton Paths

Page 2 of 4

Learning Outcomes:	The Intended Learning Outcomes for this course, as approved by the Education Council, are as follows. Upon successful completion of this course a student will be able to:					
	 Establish the equivalence of compound propositions using truth tables and basic laws of logic. Use rules of inference to determine the validity of arguments. Translate English statements into quantified logic statements and vice versa. Prove statements using direct and indirect proofs and ordinary and strong mathematical induction. Prove set equivalences using membership, basic set identities and logical equivalences. Determine whether functions are surjective, injective or bijective. Compare the cardinality of finite and infinite sets through the use of bijections and distinguish between countable and uncountable sets. Describe the growth of functions using big-O, big-Omega and big-Theta notation. Solve problems using the fundamental concepts of number theory and perform simple proofs involving divisibility, prime factorization and congruences. Use the Euclidean algorithm to find greatest common divisors and use other algorithms to convert numbers between different bases. Define functions and sequences recursively. Use permutations and combinations to solve counting and probability problems, including those in which repetition is allowed. Apply the pigeonhole principle to solve counting problems. Prove identities involving the binomial theorem using both algebraic and combinatorial arguments. Model counting problems using recurrence relations. Solve divide and conquer recurrence relations for n=b^k and give big-O estimates for increasing functions. Identify and describe different types of graphs and their connectivity. 					
A&S Math Lab:	Ewing 224: This drop-in centre is freely available for your use to work on math homework and to seek help from the tutor on staff (see hours posted on door).					
Calculator Policy:	As per Math Department policy, the only calculator permitted for use on tests and the final exam is the Sharp EL-531 scientific calculator. No other make/model of calculator is permitted, nor are other electronic devices such as cell phones, iPods, electronic translators, etc.					
Homework:	There will be periodic assignments to be handed in for marking, details for which will be posted on the course website. LATE ASSIGNMENTS WILL NOT BE ACCEPTED.					
Final Exam:	A comprehensive final exam will take place during the final exam period of April 14-17, 22-25. The specific date, time, and location will be announced in early February. You must write the final exam at the scheduled time as per Camosun College's policy on final examinations. See <u>camosun.ca/learn/calendar/current/pdf/academic-policies.pdf</u> .					

Revised December 13, 2013

Page 3 of 4

Grade Calculation:	The final grade will be calculated according to the following breakdown:									
	Term	Assignments: Term Tests: Comprehensive 3-hour Final Exam:			35%	15%* 35% 50%				
* Note: The lowest assignment mark will be dropped when calcula assignment average. This allows you to miss one assignment with penalty.										
Grade Scale:	Final letter grades are assigned as follows:									
	0-49	50-59	60-64	65-69	70-72	73-76	77-79	80-84	85-89	90-100
F D C C+ B- B B+ A-							Α	A+		
	For information on Camosun College's grading policy, see Sec E-1.5 on the policy webpage <u>camosun.ca/about/policies/policies.html</u> .									

Revised December 13, 2013

Page 4 of 4