

SCHOOL OF ARTS & SCIENCE CHEMISTRY AND GEOSCIENCE DEPARTMENT

CHEM 121-003

2014 Winter

A. Contact Information

Instructor: Hugh Cartwright

Office: Fisher tba, Phone: local tba

E-mail: CartwrightH@camosun.bc.ca

Email is a better method of communication than phone and should always be used for non-urgent matters. Minor queries can often be dealt with before or after class, or via email. For more substantial problems, arrange a time to see me in person.

Lectures: Thursday 6.30 pm – 9.20 pm (F 310)

Labs: Tuesday 6.30 pm – 9.20 pm (normally in F356/358, but the initial January 7th meeting will be a lecture class in F 310)

Office Hours: Regular office hours as discussed in the first class; other times by appointment.

Important Da	tes: see http://camosun.ca/learn/ca	alendar/current/pdf/	important-dates.pdf
January 7 th	1 st day of Chem 121	January 20 th	Fee deadline
February 10 th	Family Day (College closed)	February 13 th - 14 th	Reading Break
April 18 th	Good Friday	April 21 st	Easter Monday
	April 14 th – 17 th , 22 nd – 25 th	Exam period	

B. Required Materials

Text: *Chemistry, The Central Science: a Broad Perspective,* by Brown, Lemay, Bursten, Langford, Sagatys, and Duffy. Prentice Hall. Australian edition, 2nd edition (blue); the 1st edition (purple/green) is an acceptable alternative, as are the 10th and 11th US editions.

Lab Manual: Chemistry 121 Laboratory Manual, (from the bookstore).

C. Exams and Problem Sets

There will be two 2 hour written midterm tests (dates and content to be advised) and a 3 hour written final examination which will cover material in the whole course.

There are questions at the end of each chapter in the text; it will help your understanding if you try to answer these. Solutions to the red-numbered problems are given at the end of the text and on the accompanying CD. Answers to the black problems will be given on request. There will also be inclass questions that relate to the lecture material. Take note of any difficulties that you have with these problems so that you can review the relevant topics, and if necessary ask for help.

D. Summary of Lecture Content

The table gives a broad outline of the topics to be covered; minor adjustments to content and timing may be made as the course progresses.

Area	Main Topics	Classes (approx)	Textbook chapters*
Organic Chemistry	Hydrocarbons: alkanes, alkenes, alkynes, Structural isomerism, Naming of organic compounds, Reactions of alkanes: combustion, substitution, Reaction mechanism, Free radical reactions, Cyclic hydrocarbons, Addition to alkenes, Stereoisomerism, Simple functional groups: alcohols, ethers, carboxylic acids, aldehydes, halogen compounds, Optical isomerism, Synthesis and typical reactions of alcohols and acids, Aromatic compounds: structure and naming, Reactions of aromatic compounds, Polymers	3	21 to 27, selected topics.
Chemical Kinetics	Reaction rate as measured by change in concentration, Factors that influence reaction rate, Collision theory, Rate law: meaning, types, examples, Half-life, Determining a rate law from experimental data, Activation energy, Activated complex theory, Why temperature affects rate, Arrhenius equation, Catalysts, enzymes, Reaction mechanism and the link to rate laws; rate-determining step	2	12
Thermo- chemistry	Energy, 1 st law, Enthalpy; enthalpy of combustion, fuels, Calorimetry, Enthalpy of reaction, Hess's Law, Calculations	1	4
Thermo- dynamics	Spontaneity; reversibility, Entropy and the direction of time, Gibbs Energy, 2 nd law, 3 rd law; 3 rd law entropy, Free energy and temperature, Non-spontaneous processes, Calculations	1	4
Equilibrium	Homogeneous and heterogeneous equilibria, Reaction	1 - 1.5	13

	quotient, Condition of equilibrium, Equilibrium constants; Kc, Kp, Le Chatelier, Link between equilibrium		
	Haber process, Calculating K from Free Energy changes,		
	Hess's law revisited		
Acids and	Definitions of acids and bases: Arrhenius, Lewis,	1.5 - 2	14
Bases	Bronsted-Lowery, Weak and strong acids and bases,		
	Conjugate acids/bases, pH; calculations for weak and		
	strong acids, Ka and Kb, Relationship between strength		
	and structure, Auto-ionization of water, Titration		
Aqueous	Solubility of ionic compounds, Acid/base nature of salts,	1	15
equilibria	Common ion effect, Complex ions, Buffers		
Electrochem-	Redox reactions, Electrochemical cells, batteries, Half	1	3, 16
istry	cells, Balancing redox reactions, Standard electrode		
	potential, Nernst equation, Connection between Free		
	Energy and cell voltage		

*textbook chapters are from Brown, LeMay, Bursten; 2nd Australian edition

E. Assessment

The course mark will be calculated as follows:

2 Midterm tests	(12.5 % each) = 25 %
Final exam	45 %
Laboratory work	30 %

If you miss a midterm due to illness or <u>unavoidable</u> commitments, the weight of the missed test will be carried over to the final. There are no make-up dates for the midterm tests or the final exam.

F. Laboratory Mark

Your work in the laboratory will be assessed as follows:

Arriving punctually, fully prepared for the experiment, familiar with the procedure and having	
the correct safety gear.	
Ability to work competently and confidently with good attitude.	
Pre-lab assignments (completed before the class)	10 %

Quality of Report	60 %
Leaving your workspace clean and tidy	5 %

No more than two laboratory classes may be missed during the course unless there are extenuating circumstances; if you miss more than two lab classes without an acceptable excuse you will fail the course. If you miss a lab without good reason you will be given a mark of zero for this experiment. If you are unable to attend a lab class, attempt to obtain data from a partner or perform the class with another section so that you can submit a report.

You must hand in your pre-lab assignment as you enter the lab. If you fail to do this you will receive a mark of zero for the pre-lab and you will not be permitted to start the experiment until the prelab has been satisfactorily completed.

Reports are due in 1 week after you performed the experiment. If your report is late by up to 1 week, you will lose 25% of the report marks. Reports that are more than one week late without adequate excuse will be given a mark of zero. Reports will be marked and returned to you; please retain them.

Further information about the format of reports will be provided in the first class; bear this information in mind as you prepare your reports. A lab schedule will also be provided in this class.

You must pass both the Laboratory section and the lecture section of the course with a mark of at least 50 % in each part.

You must obtain, and use, safety glasses; you are advised to wear a lab coat while doing experimental work. It is not the responsibility of the College to provide safety glasses or lab coats.

G. Grading

The following scale is used by Camosun College:

>90 A+ 77-79 B+ 65-69 C+ 50-59 D 0-49 F 85-89 A 73-76 B 60-64 C 80-84 A- 70-72 B-

H. Intended Learning Outcomes

(<u>No</u> changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Upon completion of this course the student will be able to:

1. Utilize the specialized vocabulary and nomenclature based on the IUPAC system of organic compounds to name and draw structures for many simple organic compounds containing the common functional groups.

2. Write chemical reactions to illustrate numerous transformations between organic functional groups.

3. Draw structural and stereoisomers of organic compounds and name stereoisomers based upon the IUPAC system of nomenclature.

4. Demonstrate an understanding of the factors that influence the rate of a chemical reaction, deduce the rate of a chemical reaction from time/concentration data, and utilize rate laws to perform kinetic calculations.

5. Apply the laws of thermodynamics and account for the factors that lead to spontaneous physical and chemical changes.

6. Explain how and why reactions attain equilibrium positions and perform calculations pertaining to equilibrium systems.

7. Describe redox reactions, use electrochemical data to predict the spontaneity of redox reactions, and comprehend the structures of electrochemical cells.

8. Describe various acid-base theories and apply these theories to acid-base reactions in aqueous solution.

9. Perform experiments in the areas of preparative organic, preparative inorganic, physical and analytical chemistry and use the various associated pieces of laboratory equipment.

I. LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College Calendar, Registrar=s Office or the College web site at <u>http://www.camosun.bc.ca</u>

ACADEMIC CONDUCT POLICY

There is an Academic Conduct Policy. It is the student's responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, Registration, and on the College web site in the Policy Section.

www.camosun.bc.ca/divisions/pres/policy/2-education/2-8