CAMOSUN COLLEGE DEPARTMENT OF CHEMISTRY AND GEOSCIENCE Chemistry 121-005, College Chemistry II Course Outline Winter 2012

A. General Information

Instructor: Steve McKinnon

Office - Fisher 348A. Telephone: 370-3446 Email: mckinnons@camuson.bc.ca

Lectures: Wednesday (F 214): 6:30 am - 9:20 pm

Lab: Monday (F 356): 6:30 pm - 9:20 pm

Office Hours: TBA

Important Dates: January 23rd: Fee deadline, February 16th & 17th: Reading Break/Connections Day (College closed). March 13th: Last day to withdraw without a failing grade. April 16th - 21st and April 23rd and 24th Exam period.

B. Required Materials for the Course

Principal (Only) Text suitable for this course: CHEMISTRY, The Central Science: a Broad Perspective, by Brown, Lemay, Bursten, Langford, Sagatys, and Duffy. Prentice Hall. Australian edition 2nd edition (blue).

The 1st edition (purple/green) is acceptable along with the 10th and 11th US editions.

Lab Experiments: Chemistry 121 Laboratory Manual, Fall 2007 Edition (From the bookstore)

C. Course Content and Schedule

The course includes:

- a) Four in-class quizzes.
- b) 2 hour written midterm
- c) A 3 hour written final examination at the end of the course on all the material in the course.

Notes

- 1. There are recommended questions found after each chapter. These problem sets will not be marked but solutions to the red questions may be found at the end of the textbook or the accompanying CD. Answers to any of the questions in black may be given on request.
- 2. Quizzes will be on material covered in the classes prior to quiz. Though the quizzes are not cumulative, most topics will require that the student knows and understands material from earlier in the course.

D. Summary of Lecture Material with Chapter References

Subject	Material Covered	Classes	Textbook
	A11 /A11	(approximate)	chapters*
Organic Chemistry	Alkane/Alkenes structure and	4	21 to 26.
	properties, including naming		Selected
	cycloalkanes/ cycloalkenes,		topics.
	reactions and stereochemistry,		
	functional groups and some		
	reactions. Polymers depending on schedule		
Chemical Kinetics	Reaction rates, change in	2	12
Chemical Kinetics	concentration with time,	2	12
	temperature and rate, reaction		
	mechanisms and catalysis		
Thermochemistry	Energy, first law of	1	4
The moenemistry	thermodynamics, enthalpy,	1	T
	calorimetry, Hess' Law, enthalpies of		
	formation		
Thermodynamics	Spontaneity, second law of	1	4
	thermodynamics, entropy, Gibbs	_	_
	Free Energy, free energy and		
	temperature, free energy and		
	equilibrium		
Equilibrium	Equilibrium constants,	1.5	13
	heterogeneous equilibria, working		
	with equilibrium constants		
Acids and Bases	Acids and bases, pH scale, Ka and	1.5	14
	Kb, auto-ionization of water, acid		
	strength of ions		
Aqueous equilibria	Titrations, common ion effect,	1	15
	buffers, solubility equilibrium		
Electrochemistry	Redox reactions, balancing redox	1	3, 16
	equations, half cells and the Nernst		
	equation		

^{*}textbook chapters are from Brown, LeMay, Bursten; 2^{nd} Australian edition

E. Basis of Student Assessment (Weighting)

The course mark will be derived in the following manner:

Quizzes (4 @ 5% each)	20 %
Midterm	20 %
Final	35 %
Laboratory work	25 %

In the event of a quiz being missed due to illness/other commitments the weight of the missed test will be carried over to the final. There are no make-up dates for quizzes.

F. The Laboratory Mark

Detailed information will be presented at the first laboratory class. Students must pass BOTH the laboratory section and the lecture section of the course to obtain a passing grade.

No more than 2 laboratory classes may be missed, during the course. In the event of a student being unable to attend a laboratory class it is advised that the student attempt to obtain data from a partner for partial credit or perform the lab with another section.

The lab mark is based on attendance and the laboratory report. A student that attends the laboratory class but does not present a written report will receive a score of 25%.

Students are responsible for obtaining their own safety glasses and laboratory jacket from the bookstore.

G. The Grading System

The following scale is used by Camosun College:

```
>90 A+ 77-79 B+ 65-69 C+ 50-59 D 0-49 F
85-89 A 73-76 B 60-64 C
80-84 A- 70-72 B-
```

H. Intended Learning Outcomes

(<u>No</u> changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Upon completion of this course the student will be able to:

- 1. Utilize the specialized vocabulary and nomenclature based on the IUPAC system of organic compounds to name and draw structures for many simple organic compounds containing the common functional groups.
- 2. Write chemical reactions to illustrate numerous transformations between organic functional groups.
- 3. Draw structural and stereoisomers of organic compounds and name stereoisomers based upon the IUPAC system of nomenclature.
- 4. Demonstrate an understanding of the factors that influence the rate of a chemical reaction, deduce the rate of a chemical reaction from time/concentration data, and utilize rate laws to perform kinetic calculations.
- 5. Apply the laws of thermodynamics and account for the factors that lead to spontaneous physical and chemical changes.
- 6. Explain how and why reactions attain equilibrium positions and perform calculations pertaining to equilibrium systems.
- 7. Describe redox reactions, use electrochemical data to predict the spontaneity of redox reactions, and comprehend the structures of electrochemical cells.
- 8. Describe various acid-base theories and apply these theories to acid-base reactions in aqueous solution.
- 9. Perform experiments in the areas of preparative organic, preparative inorganic, physical and analytical chemistry and use the various associated pieces of laboratory equipment.

I. LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College Calendar, Registrar=s Office or the College web site at http://www.camosun.bc.ca

ACADEMIC CONDUCT POLICY

There is an Academic Conduct Policy. It is the student=s responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, Registration, and on the College web site in the Policy Section.

www.camosun.bc.ca/divisions/pres/policy/2-education/2-8

Steve McKinnon Winter 2012 Lab Schedule: Chem 121 (005) – Mondays, 6:30-9:20 pm in Fisher 356

Week Number	Activity & Experiment Number	Actual Date of Lab
Begins on		Monday
I	Review & Lab Orientation -	Jan 9 th
Jan 9 th	attendance mandatory	
II	Expt. 1 Preparation of Xylene	Jan 16 th
Jan 16 th	Sulfonic acid	
III	Group A	Jan 23 rd
Jan 23 rd	Expt. 3 Preparation of Benzoic	
	acid	
IV	Group B	Jan 30 th
Jan 30 th	Expt. 3 Preparation of Benzoic	
	acid	
V	Expt. 2 Analysis of an unknown	Feb 6 th
Feb 6 th	acid	
VI		Feb 13 th
Feb 13 th		
VII	Expt. 6 The rate of bromination	Feb 20 th
Feb 20 th	of acetone	
VIII		Feb 27 th
Feb 27 th		
IX	Expt 10 Thermochemistry	Mar 5 th
Mar 5 th		
X		Mar 12 th
Mar 12 th		-
XI	Expt. 4 Banana Oil	Mar 19 th
Mar 19 th		
XII	Expt. 8 Gravimetric analysis of	Mar 26 th
Mar 26 th	chloride	
XIII	Expt. 9 Synthesis of copper(I)	Apr 2nd
Apr 2 nd	chloride, subject to scheduling	P
XIV	Easter Monday - No Lab	Apr 9th
Apr 9 th	Zuotei izonauj ito zub	
- Apr	Final Exams	
Final Exam Period	Apr 16th - 21st, 23rd, and 24th	

Note: This is only a preliminary lab schedule, changes will be made due to equipment &/or glassware problems, or rescheduling of tests... Lab coat and eye protection are both mandatory!!

^{*}Lab information will be given in the first class