CAMOSUN COLLEGE DEPARTMENT OF CHEMISTRY AND GEOSCIENCE Chemistry 120-03, College Chemistry I Course Outline Winter 2011

A. General Information

Instructor: John Lee

Office - Fisher 352. Telephone: 3909 Email: leejohn@camosun.bc.ca

Email is my preferred method of communication however any problems with course material/questions should be addressed in person.

Lectures: Monday (F 210), 6.30 pm - 9.20 pm

Lab: Wednesday (F 356): 6.30 pm – 9.20 pm

Office Hours: TBA

Important Dates: January 24th Fee deadline, February 24th & 25th: Reading Break/Connections Day (College closed). March 14th: Last day to withdraw without a failing grade. April 18th - 21st and April 26th -29th Exam period.

B. Required Materials for the Course

Principal (Only) Text suitable for this course: CHEMISTRY, The Central Science: a Broad Perspective, by Brown, Lemay, Bursten, Langford, Sagatys, and Duffy. Prentice Hall. Australian edition 2nd edition (blue).

The 1st edition (purple/green) is acceptable along with the 10th and 11th US editions.

Lab Experiments: Chemistry 120 Laboratory Manual, Fall 2007 Edition (From the bookstore)

Recommended Materials for the Course

Chemistry 060 Camosun College is recommended for students that have not previously taken Chemistry 060 at Camosun and/or haven't studied chemistry for an extended period.

C. Summary of Lecture Material with Chapter References (Subject to revision and timing)

Subject	Material Covered	Lecture Hours	Textbook
Intro and Review	Classification of matter, units of measurement, significant figures,	(approximate) 3	chapters 1,2, 3 and 4
	atoms, protons, neutrons, electrons,		
	isotopes, atomic masses.		
	Compounds, nomenclature, the		
	mole, molar mass and percent		
	composition by mass, chemical		
	equations, reaction stoichiometry,		
Electronic Structure	solution concentration.	6	5
of Atoms	Light, quanta and photons, atomic spectra and energy levels, wave	O	3
of Atoms	properties of electrons. Atomic		
	orbitals, quantum numbers, electron		
	spin, electronic structure of the		
	hydrogen atom. Many-electron		
	atoms, electron configurations of		
	atoms and ions,		
Periodic Properties	Development of the periodic table,	3	6
	effective nuclear charge, atomic and		
	ionic radius, ionisation energy, electron affinity.		
Chemical Bonding	Ionic bonds, Lewis symbols, lattice	5	7
	energy, properties of ionic		
	compounds. Covalent bonds, octet		
	rule and Lewis structures.		
	Polyatomic species, resonance and		
	formal charge. Exceptions to the		
	octet rule. Electronegativity and bond polarity. Bond enthalpies		
Molecular Geometry	Molecules: shape, size, and bond	5	8
Molecular deometry	strength. Shapes of molecules and	3	0
	ions, VSEPR theory. Charge		
	distribution in molecules, polar		
	bonds and polar molecules. Bond		
	strengths and bond lengths.		
	Orbitals, hybridization and bonding.		
	Molecular Orbitals (hydrogen atom)		
	and Metallic Bonding		
Intermolecular	Comparison of liquids and solids,	6	10
Forces, Liquids and	intermolecular forces, ion-dipole,	_	- •
Solids	dipole-dipole, London dispersion		
	forces, hydrogen bonding.		

		Properties of liquids, phase changes, heating curves, critical temperature and pressure, vapour pressure, boiling point. Phase diagrams, structures of solids.		
Properties Solutions	of	Solution process, solubility, factors affecting solubility, Henry's law, colligative properties.	3	11
Gases		Nature of gases, atmospheric pressure. Gas laws, ideal gas law, gas reaction stoichiometry, gas density, Daltons Law of partial pressures, kinetic molecular theory. Real gases, limitations of ideal gas law	5	9
Chemistry of Environment	the	Structure of Earth's atmosphere, ozone layer and its depletion, tropospheric pollution, greenhouse effect and photochemical smog. Oceans and freshwater.	6	18

D. Course Content and Schedule

The course includes:

- a) 6 in-class review quizzes.
- b) One 2 hour written midterm test.
- c) A 3 hour written final examination at the end of the course on all the material in the course.

Notes

- 1. There are recommended questions found after each chapter. These problem sets will not be marked but solutions to the red questions may be found at the end of the textbook or the accompanying CD. Answers to any of the questions in black may be given on request.
- 2. The midterm test will be on material covered in the half of the course. It will take place during the lab period of week
- 3. The in class quizzes will be on material covered in the previous 2 weeks. They will be given at the start of class, answers will be given after the quiz.
- 4. At least 2 of the 14 evenings designated for Lab classes may be used for additional lectures or reviews. Sufficient notice will be given

E. Basis of Student Assessment (Weighting)

The course mark will be derived in the following manner:

6 Quizzes	(3% each)	1 = 18 %
O Quiddes	O / O CUCII	1 10 /0

1 Midterm test 18 % Final 39 % Laboratory work 25 %

If it is advantageous to the student the theory mark will be solely derived from the final examination, or a combination of midterm/quizzes with the final.

Quiz dates (preliminary) January 31st February 14th, 28th, March 14th, 28th, April 6th.

In the event of a quiz or midterm test being missed due to illness/other commitments the weight of the missed quiz/test will be carried over to the final. There are no make-up dates for quizzes or midterm.

F. The Laboratory Mark

Detailed information will be presented at the first laboratory class. Students must pass BOTH the laboratory section and the lecture section of the course to obtain a passing grade.

No more than 2 laboratory classes may be missed, during the course. In the event of a student being unable to attend a laboratory class it is advised that the student attempt to obtain data from a partner or perform the class with another section.

The lab mark is based on attendance and the laboratory report. A student that attends the laboratory class but does not present a written report will receive a score of 40%.

Students are responsible for obtaining their own safety glasses and laboratory jacket from the bookstore.

G. The Grading System

The following scale is used by Camosun College:

```
>90 A+ 77-79 B+ 65-69 C+ 50-59 D 0-49 F
```

85-89 A 73-76 B 60-64 C

80-84 A- 70-72 B-

H. Intended Learning Outcomes

(No changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Upon completion of this course the student will be able to:

- 1. Utilize nomenclature rules to name ionic and covalent compounds.
- 2. Demonstrate an understanding of stoichiometry by balancing chemical equations and performing mathematical calculations involving chemical reactions.
- 3. Describe the electronic structure of any atom in the periodic table and apply it to explain many of the physical and chemical properties of the elements.
- 4. Utilize simple bonding theories to explain why elements combine to form the compounds they do and also to explain many of the properties of compounds.
- 5. Apply knowledge of intermolecular interactions to rationalize many important physical properties of bulk matter in the gas, liquid and solid phases.
- 6. Use standard chemistry lab equipment, including burets, pipets, Buchner filters, and volumetric glassware in the correct manner.
- 7. Perform many standard laboratory procedures, such as titrations, preparation of standard solutions, the preparation, isolation, and purification of compounds, as well as use spectrophotometers to make analytical measurements.

I. LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College Calendar, Registrar=s Office or the College web site at

http://www.camosun.bc.ca

ACADEMIC CONDUCT POLICY {tc \15 "ACADEMIC CONDUCT POLICY}

There is an Academic Conduct Policy. It is the student=s responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, Registration, and on the College web site in the Policy Section.

www.camosun.bc.ca/divisions/pres/policy/2-education/2-8

John Lee Winter Lab Schedule:

Note: Everybody will do Expt. 2 in Week II. Half of the class (14-16 students) will do Expt. 3 in Week III and the other half of the class will do Expt. 3 in Week IV.

Chem 120 (03) - Tuesdays, 6:30-9:20 pm in Fisher 356

Week Number Begins on	Activity & Experiment Number	Actual Date of Lab Wednesday
I Jan 10 th	Review & Lab Orientation— attendance mandatory	Jan 12 th
II Jan 17 th	Expt. 2 Densities of Solids & Liquids	Jan 19 th
III Jan 24 th	Group A Expt. 3 Stoichiometry of Chem. Rxns	Jan 26 th
IV Jan 31 st	Group B Expt. 3 Stoichiometry of Chem. Rxns	Feb2 nd
V Feb 7 th	Expt. 4 The Spectroscopic Determination of Nickel in Aqueous Solution	Feb 9 th
VI Feb 14 th	Expt. 5 Colorimetric Determination of Iron in a Vitamin Tablet	Feb 16 th
VII Feb 21 st	Lecture	Feb 23 rd
VIII Feb 28 th	Test	Mar 2 nd
IX Mar 7 th	Expt. 6 Determination of Copper Using Atomic Absorption Spectroscopy	Mar 9 th
X Mar 14 th	Expt. 7 Determination of the Total Hardness of Water Using E.D.T.A.	Mar 16 th
XI Mar 21 st	Expt. 9 The Preparation of Potassium Tris(oxalato)Ferrate(III)	Mar 23 nd
XII Mar 28 th	Expt. 10 Analysis & Uses of Potassium Tris(oxalato)Ferrate(III)	Mar 30 th
XIII Apr 4 th	lecture	Apr 6 th
XIV Apr 11 th	Exam Info & Review	Apr 13 th

Note: This is only a preliminary lab schedule, changes will be made due to equipment &/or glassware problems, or rescheduling of tests... Lab coat and eye protection are both mandatory!!