PHYS 210 ELECTRICITY AND MAGNETISM

A calculus-based course in electricity and magnetism. Topics include electrostatics; capacitance; dielectrics; electric circuits; magnetic fields; electromagnetic induction; Maxwell's equations.

OFFERED: CREDIT: IN-CLASS WORKLOAD:

PREREQUISITES:

Winter, Quarter 1, Quarter 3 4 4 lecture, 2 lab (Semester) 5 lecture, 2 lab (Quarter 1) Physics 115 and Math 101or admission to the ENGBRIDGE program. *Math 235 or Math 250A recommended.*

Instructor:	Dr. Julie Alexander
Office:	Tech 220
Phone:	370-4437
Email:	jalex@camosun.bc.ca
Website:	http://web.uvic.ca/~jalexndr
Office Hours:	M,T,Th,F – 11:30 - 12:30

REQUIRED MATERIALS:

Textbook: <u>Physics for Scientists & Engineers with Modern Physics</u>, 7th edition, Serway, R.A., and Jewett, J.W.Jr. Physics 210 lab manual

DEPARTMENT POLICIES REGARDING TESTING:

- The final exam will cover the entire course and will be 3 hours long. As stated in the current college calendar on page 39, "students are expected to write tests and final exams at the scheduled time and place." Exceptions will only be considered due to emergency circumstances as outlined in the calendar. Holidays or scheduled flights are not considered to be emergencies.
- 2. Instructors are not required to provide make-up tests. At their discretion, instructors may waive a test or provide a make-up test only in the event of documented illness or other extenuating circumstances.

TERM TESTS

There will be 2 term tests. Test dates are:

Test #1	Thursday April 29
Test #2	Thursday May 27

There will also be tutorial quizzes to be announced.

DEPARTMENT POLICIES REGARDING LABS:

- 1. All assigned laboratory exercises and reports must be completed with an overall grade of 60% in order to obtain credit for this course. A lab may be waived or made up at a later time only in the case of documented illness or other extenuating circumstances.
- 2. At the discretion of the instructor, a student who is repeating this Physics course may apply for lab exemption.

Physics 210 Labs

Students will work in pairs in the lab and will hand in one common report for each pair. The lab schedule is in a separate document. Labs are due on the next scheduled lab period.

GRADING

The mark distribution for this course is as follows:

Final Exam	50%
2 Midterms	30%
Lab Reports	10%
Tutorial guizzes	10%
	100%

GRADE SCALE

Percentage	Letter Grade
90 to 100 85 to 89 80 to 84 77 to 79 73 to 76 70 to 72 65 to 69 60 to 64 50 to 59	A+ A B+ B- C+ C
	1

Course Content:

Chapter 23 – Electric Fields, Chapter 24 – Gauss's Law, Chapter 25 – Electric Potential Chapter 26 – Capacitance and Dielectrics, Chapter 27 – Current and Resistance Chapter 28 – Electric Circuits, Chapter 29, 30 – Magnetic Fields

Chapter 31 – Faraday's Law

OUTLINE:

1. Electric charge

- 1.1 Electromagnetism as a fundamental force of nature
- 1.2 Coulomb's law
- 1.3 Conservation and quantization of charge

2. The Electric Field

- 2.1 Electric field calculations for charge distributions of high symmetry
- 2.2 Electric flux
- 2.3 Gauss' law

3. Electric Potential

- 3.1 Equipotential surfaces
- 3.2 Calculation of potential due to charge distributions of high symmetry

4. Capacitance

- 4.1 Combinations of capacitors
- 4.2 Energy storage in capacitors
- 4.3 Dielectrics

5. Electrical circuits

- 5.1 Series and parallel circuits
- 5.2 Kirchhoff's rules

6. Magnetism

- 6.1 Force on a current-carrying conductor
- 6.2 Torque on a current loop
- 6.3 The magnetic dipole
- 6.4 Magnetic flux

7. Sources of Magnetic Fields

- 7.1 The Biot-Savart law
- 7.2 Ampere's law
- 7.3 Magnetic force on a current-carrying wire
- 7.4 Solenoids and toroids

8. Electromagnetic Induction

- 8.1 Faraday's law
- 8.2 Lenz's law
- 8.3 Eddy currents