

School of Arts & Science CHEMISTRY AND GEOSCIENCE DEPARTMENT

GEOS 110- 001 Earth-Ocean-Atmosphere System 2008 Fall

COURSE OUTLINE

The Approved Course Description is available on the College web site

1. Instructor Information

(a)	Instructor:	Alan Gell	
(b)	Office Hours:	tba	
(c)	Location:	F 344B	
(d)	Phone:	370-3446	Alternative Phone:
(e)	Email:	gella@camosun.bc.ca	
(f)	Website:		

2. Intended Learning Outcomes

Upon completion of this course the student will be able to:

- 1. Describe and interpret short-term and long-term Geologic, Oceanic and Atmospheric processes and their interactions.
- 2. Make hypothesis-based scientific observations, analyze and interpret quantitative data with reference to Geologic, Oceanic and Atmospheric processes.
- 3. Discuss the energy budget of the atmosphere, and its short-term and long-term variability.
- 4. Describe the atmospheric circulation system
- 5. Interpret relationships among temperature, salinity and density of seawater, and how these properties vary over time.
- 6. Describe ocean current transport and be able to assess the role of currents in global heat transfer.
- 7. Describe relationships among surface ocean currents and atmospheric circulation.
- 8. Relate ocean-floor topography and ocean depth data to processes of sea-floor spreading and the age of ocean basins.
- 9. Discuss the circulation of the solid earth and plate tectonic processes.
- 10. Relate recycling of the elements to circulation of earth, ocean and atmosphere.
- 11. Discuss evolution of earth and atmosphere, and short- and long-term climate change.
- 12. Describe processes involved in global warming.
- 13. Understand the nature and distribution of atmospheric ozone and mechanisms of ozone depletion.

3. Materials

(a)	OPTIONAL Text	The Earth System, Kump, Kasting and Crane, Pearson Publ, 2 nd ed.

Calculator, coloured pencils

4. Course Content and Schedule

Lectures: Mon, Wed, 3:30 – 4:50, F300;	Lab:	Tues 3:30 – 6:20,	F300
Торіс		Readi	ng
Introduction to the course			
Global change on short timescales		Ch. 1, p. 1 - 10	
Global change on long timescales		Ch. 1, p. 10 - 17	
Systems concepts		Ch. 2, p. 18 - 23	
Feedback in Earth systems		Ch. 2, p. 23 - 33	
Electromagnetic radiation		Ch. 3, p. 34 - 41	
Earth's energy balance		Ch. 3, p. 41 – 43	
Composition & structure of the atmosphere		Ch. 3, p. 44 - 54	
The movement of air		Ch. 4, p. 55 - 61	
General circulation of the atmosphere		Ch. 4, p. 61 - 68	
Moisture in the atmosphere		Ch. 4, p. 68 - 72	
Global hydrologic cycle		Ch. 4, p. 72 - 82	
Oceanic circulation: surface currents		Ch. 5, p. 83 - 87	
Boundary currents		Ch. 5, p. 87 - 91	
Circulation of the deep ocean		Ch. 5, p. 91 - 96	
Thermohaline circulation and climate		Ch. 5, p. 96 - 103	
Structure of the solid earth		Ch. 7, p. 117 - 126	
Plate tectonics		Ch. 7, p. 126 - 132	
Plate boundaries		Ch. 7, p. 133 - 137	
Driving forces of plate tectonics		Ch. 7, p. 137 - 146	
Introduction to the carbon cycle		Ch. 8, p. 147 - 152	
The short-term carbon cycle		Ch. 8, p. 153 - 158	
The long-term carbon cycle - Part 1		Ch. 8, p. 158 - 167	
The long-term carbon cycle - Part 2		Ch. 8, p. 167 – 172	
Origin and evolution of the Earth and atmosphere		Ch. 10, 11, parts	

Long-term climate regulation	Ch.12, parts, espec. 236-249		
Evidence of Pleistocene glaciations	Ch. 14, p. 270 - 274		
Milankovitch cycles and glaciations	Ch. 14, p. 274 - 279		
Glacial climate feedbacks	Ch. 14, p. 279 - 283		
More glacial climate feedbacks	Ch. 14, p. 283 - 288		
Holocene climate change	Ch. 15, p. 289 - 299		
The Little Ice Age	Ch. 15, p. 299 - 306		
Introduction to ENSO	Ch. 15, p. 306 - 312		
More short-term climate variability	Ch. 15, p. 312 - 316		
The carbon cycle and global warming	Ch. 16, p. 317 - 324		
Future climate projections	Ch. 16, p. 324 - 334		
Global warming and public policy	Ch. 16, p. 334 - 342		
Stratospheric ozone and UV radiation	Ch. 17, p. 343 - 353		
Changes in stratospheric ozone	Ch. 17, p. 353 - 357		

5. Basis of Student Assessment (Weighting)

(a)	Assignments	10 labs X 2.5 %
(b)	Exams	Midterm 1 - 15%, Midterm 2 - 15%, final – 20%
(c)	Other (eg, Attendance, Project, Group Work)	Project 25%

6. Grading System

Standard Grading System of Arts and Science

7. Recommended Materials or Services to Assist Students to Succeed Throughout the Course

LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College calendar, at Student Services or the College web site at <u>camosun.ca</u>.

STUDENT CONDUCT POLICY

There is a Student Conduct Policy **which includes plagiarism**. It is the student's responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, at Student Services and on the College web site in the Policy Section.