CAMOSUN	School of Arts \& Science COLLEE MATHEMATICS DEPARTMENT
MATH 189	
Technical Mathematics 3	
2008Q3	

COURSE OUTLINE

The Approved Course Description is available on the web @ leungc.disted.camosun.bc.cal
Ω Please note: this outline will be electronically stored for five (5) years only. It is strongly recommended students keep this outline for your records.

1. Instructor Information

(a)	Instructor:	Chi-Ming Leung	
(b)	Office Hours:	ThF10:30-11:20, MTuWTh14:30-15:20	
(c)	Location:	CBA 147	
(d)	Phone:	4448	Alternative Phone:
(e)	Email:	leungc@camosun.bc.ca	
(f)	Website:	http://leungc.disted.camosun.bc.ca	

2. Intended Learning Outcomes

(No changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Upon completion of this course the student will be able to:

1. Use the Addition Rule and the Addition Rule for Non-disjoint Sets, the Multiplication Rule, factorials, permutations, and combinations in the statement and solution of counting problems.
2. Use the Addition Rule, Multiplication Rule, Contingency Tables, Probability Trees, and the Rules of Probability and of Conditional Probability to state and solve probability problems. Determine whether events are independent or dependent, and whether events are mutually exclusive.
3. Produce a stem and leaf plot, Pie Chart, Histogram, Frequency Polygon, Relative Frequency Polygon and Ogive for given data.
4. Find the Arithmetic Mean, Median, and Mode of raw data. Use the weighted mean formula to find the Arithmetic Mean. Use the probability formula $\overline{\mathrm{x}}=\sum \mathrm{P}(\mathrm{x}) \cdot \mathrm{x}$ to find the Arithmetic Mean of data represented in a frequency table.
5. Find the Population and Sample Variance and Standard Deviation of raw data, weighted data and data presented in a frequency table.
6. Apply the Empirical Rule or Tchebyshev's Theorem to make a table showing the expected percentage of scores, the actual number of scores, and actual percentage of scores which fall within one, two, and three standard deviations of the mean.
7. Use the Expected Value formula to find the Population and Sample Variance and Standard Deviation of weighted data, and of probability distributions. Determine the expected value in application problems.
8. Apply the Binomial Probability Formula to the solution of statistics problems. Determine the mean, variance, and standard deviation of any binomial Distribution. Determine when the Binomial Distribution is appropriate for the solution of statistics problems.
9. Calculate the mean, variance, and standard deviation of the Poisson distribution. Solve problems involving the calculation of Poisson probabilities. Identify when it is appropriate to use the Poisson distribution as an approximation to the binomial distribution, and under appropriate conditions, use the Poisson distribution as an approximation to the binomial distribution.
10. Use the Standard Normal Table to solve standard normal problems. Use z-scores to compare results from distributions with different means and standard deviations. Use the Standard Normal Table to solve non-standard normal problems by converting them to standard normal problems.
11. Determine a point estimate for the mean. For given sample or population data, determine $90 \%, 95 \%$, and 99% confidence intervals for the mean. Use the Central Limit Theorem to estimate probabilities that means will be in certain intervals. Determine the size of a sample required for a given degree of confidence.
12. For given sample or population data, use standard chi-square tables to determine 90%, 95%, and 99% confidence intervals for the variance, and approximate confidence intervals for the standard deviation.
13. Determine a constant k so that $y=k f(x)$ is a probability density function on the interval $[c$, d]. Use the expected value formulas to find the mean, variance, and standard deviation of a given continuous probability distribution. Solve problems that involve calculating probabilities using continuous, uniform, and exponential distributions. Develop and use the formulas for the mean, variance, and standard deviation of the uniform and exponential distributions.
14. Given (x, y) data points, determine the regression line (least squares line), and find and interpret the coefficients or correlation and determinations.
15. Given (x, y) data points, determine least squares curve of the form $y=a+b f(x)$ or of the form $y=B e^{k x}$. Use least squares to fit linear, quadratic, and cubic curves to given data points. Use regression curves to predict future results.
16. Use the techniques of Separation of Variables and Integrable Combinations to solve linear first order and first degree DEs. Use the Linear Differential Equation of First Order formula to solve linear first order and first degree DEs.
17. Solve second order linear constant coefficient homogeneous and non-homogeneous DE's. State and solve elementary application problems involving second order linear constant coefficient homogeneous and non-homogeneous DE's.
18. Use eigenvalues to solve Systems of Linear First-Order Differential Equations.
19. Recognize and solve the second-order Euler equation by the auxiliary equations method and by the eigenvalue method.
20. Use Euler's Method and the Runge-Kutta Method to approximate the solution to DEs by numerical methods.
21. Use calculators and computers for solving equations and using applications as noted above.

3. Required Materials

$\left.\begin{array}{|c|l|l|}\hline \text { (a) } & \text { Texts } & \begin{array}{l}\text { Washing, Allyn J., Basic Technical Mathematics with Calculus } \\ \text { (metric Version), 8 }\end{array} \\ \text { Trushel, Peter J. and Chi-Ming Addison-Wesley Publishing Company } \\ \text { Camosun College }\end{array}\right\}$

4. Course Content and Schedule

(Can include: class hours, lab hours, out of class requirements and/or dates for quizzes, exams, lectures, labs, seminars, practicums, etc.)

Outline

Hours Topic

1 Measures of Central Tendency
2 Measures of Variation
2 Counting Techniques
2 Introduction to Probability
1 Introduction to Statistics
2

1 Expected Value
Pictures of Data
Interpretations of Standard Deviation

Binomial Distribution
Poisson Distribution
The Normal Probability Distribution
Confidence Intervals for the Mean
Confidence Intervals for the Variance
Continuous Probability Density Functions
Linear Regression
Non-linear Regression

Differential Equations

Solutions of Differential Equations
Separation of Variables
Integrable Combinations
The Linear Differential Equation of the First Order
Elementary Applications
Second-Order Homogeneous Equations
Auxiliary Equations with Repeated or Complex Roots
Solutions of Non-homogeneous Equations
Applications of Second-Order Equations (simple examples)
Systems of Linear First-Order Differential Equations and
Eigenvalues
Euler's Equation
Euler Method
Runge-Kutta Method
Lecture: 48 hours Test: 4 hours Leeway: 3 hours

5. Basis of Student Assessment (Weighting)
 (Should be linked directly to learning outcomes.)

(a)	Assignments	
(b)	Quizzes	50%
(c)	Exams	50%
(d)	Other (et, Attendance, Project, Group Work)	

6. Grading System

(No changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Standard Grading System (GPA)

Percentage	Grade	Description	Grade Point Equivalency
$90-100$	$\mathrm{~A}+$		9
$95-90$	A		8
$80-84$	$\mathrm{~A}-$		7
$77-79$	$\mathrm{~B}+$		6
$73-76$	B		5
$70-72$	$\mathrm{~B}-$		4
$65-69$	$\mathrm{C}+$		3
$60-64$	C		2
$50-59$	D		1
$0-49$	F	Minimum level has not been achieved.	0

Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy at camosun.ca or information on conversion to final grades, and for additional information on student record and transcript notations.

Temporary Grade	Description
I	Incomplete: A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.
IP	In progress: A temporary grade assigned for courses that are designed to have an anticipated enrollment that extends beyond one term. No more than two IP grades will be assigned for the same course.
CW	Compulsory Withdrawal: A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement.

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy

E-1.5 at camosun.ca for information on conversion to final grades, and for additional information on student record and transcript notations.

7. Recommended Materials or Services to Assist Students to Succeed Throughout the Course

LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College calendar, at Student Services or the College web site at camosun.ca.

STUDENT CONDUCT POLICY

There is a Student Conduct Policy which includes plagiarism. It is the student's responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, at Student Services and on the College web site in the Policy Section.

ADDITIONAL COMMENTS AS APPROPRIATE OR AS REQUIRED

