	School of Arts \& Science MATHEMATICS DEPARTMENT COLLEGE
MATH 261-1	
Applied Linear Algebra	
2007Q2	

COURSE OUTLINE

The Approved Course Description is available on the web @ \qquad
Ω Please note: this outline will be electronically stored for five (5) years only. It is strongly recommended students keep this outline for your records.

1. Instructor Information

(a)	Instructor:	Chi-Ming Leung		
(b)	Office Hours:	M,Tu 3:40-4:20;Tu,Th,F 10:30-11:20; Th 3:30-5:00		
(c)	Location:	CBA 147		
(d)	Phone:	4448	Alternative Phone:	
(e)	Email:	leungc@camosun.bc.ca		
(f)	Website:	http://leung.disted.camosun.bc.ca		

2. Intended Learning Outcomes

(No changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Upon completion of this course the student will be able to:

1. Plot a complex number given in rectangular or polar form in the $x-y$ plane and perform calculations involving complex numbers.
2. Find $\mathrm{n}^{\text {th }}$ roots of a complex number.
3. Use Gauss and/or Gauss Jordan elimination to solve a system of linear equations.
4. Perform basic matrix operations.
5. Find inverses of matrices using Gauss and/or Gauss Jordan elimination.
6. Evaluate the determinant of a matrix using the properties of determinants.
7. Evaluate a determinant using the cofactor expansion.
8. Solve a system of linear equations using Cramer's Rule.
9. Find the inverse of a matrix using its adjoint.
10. Sketch vectors in 2-space and 3-space and perform basic operations with vectors.
11. Use the dot product and cross product to solve different geometric problems in 2-spaces and 3-spaces.
12. Perform basic operations on vectors in R^{n}.
13. Verify that a mapping is a linear transformations from R^{n} to R^{m}.
14. Determine whether a collection of vectors is linearly independent or forms a basis for a vector space.
15. Find the row space, column space, nullspace, rank and nullity of a linear transformation.
16. Find the length of a vector and the angle between two vectors in an inner product space.
17. Determine whether two vectors are orthogonal in an inner product space.
18. Use the Gram-Schmidt process and the QR-Decomposition.
19. Change basis in an inner product space.
20. Apply the least squares method in approximation.
21. Find the eigenvalues and eigenvectors of a square matrix.
22. Diagonalize a square matrix.
23. Find an LU-decomposition of a square matrix.

3. Required Materials

(a)	Texts	Howard Anton and Chris Rorres, Elementary Linear Algebra, $9^{\text {th }}$ Edition, Wiley, 2005
(b)	Other	

4. Course Content and Schedule

(Can include: class hours, lab hours, out of class requirements and/or dates for quizzes, exams, lectures, labs, seminars, practicums, etc.)

Outline

System of Linear Equations and Matrices

Text	Hours	Topic
1.1	1	Introduction to Systems of Linear Equations
1.2	2	Gaussian Elimination
1.3	1	Matrices and Matrix Operations
1.4	2	Inverses; Rules of Matrix Arithmetic
1.5	1	Elementary Matrices and a Method for Finding A $^{\mathbf{- 1}}$
1.6	1	Further Results on Systems of Equations and Invertibility
1.7	1	Diagonal, Triangular, and Symmetric Matrices
Total hours	9	
Determinants		Topic
Text	Hours	The Determinant Function
2.1	1	Evaluating Determinants by Row Reduction
2.2	1	Coperties of the Determinant Function
2.3	2	

Vectors in 2-Space and 3-Space

Text	Hours	Topic
3.1	1	Introduction to Vectors (Geometric)
3.2	1	Norm of a Vector; Vector Arithmetic
3.3	3	Dot Product; Projections
3.4	2	Cross Product
3.5	2	Lines and Planes in 3-Space
Total hours	9	

Euclidean Vector Spaces

Text
Hours
Topic

4.1	1
4.2	2
Total hours	3

Euclidean n-Space
$4.2 \quad 2$
Linear Transformations from $\mathbf{R}^{\mathbf{n}}$ to $\mathbf{R}^{\mathbf{m}}$

General Vector Spaces

Text	Hours	Topic
5.1	1	Real Vector Spaces
5.2	2	Subspaces
5.3	2	Linear Independence
5.4	2	Basis and Dimension
5.5	2	Row Space, Column Space, and Nullspace
5.6	1	Rank and Nullity

Inner Product Spaces

Text	Hours	Topic
6.1	1	Inner Products
6.2	2	Angle and Orthogonality in Inner Product Spaces
6.3	2	Orthonormal Bases; Gram-Schmidt Process
Total hours	5	

Eigenvalues, Eigenvectors

Text	Hours	Topic
7.1	2	Eigenvalues and Eigenvectors
7.2	3	Diagonalization

Linear Transformations

Text	Hours	Topic
8.1	1	General Linear Transformations
8.2	2	Kernel and Range
8.4	2	Matrices of General Linear Transformations

Total hours 5

Applications

Text	Hours	Topic
9.1	2	Application to Differential Equation
9.2	2	Geometry of Linear Operators on \mathbf{R}^{2}
9.3	2	Least Squares Fitting to Data
9.4	2	Approximation Problems; Fourier Series
9.5	2	Quadratic Forms
9.6	2	Diagonalizing Quadratic Forms; Conic Sections
9.7	2	Quadric Surfaces
9.8	2	Comparison of Procedures for Solving Linear Systems
9.9	2	LU-Decompositions

```
Total hours 18
```

Complex Vector Spaces

Text	Hours	Topic
10.1	1	Complex Numbers
10.2	2	Modulus; Complex Conjugate; Division
10.3	2	Polar Form; DeMoivre's Theorem

Lecture	74 hours
Test	6 hours

Leeway	8 hours
Total	88 hours

88 hours

Total
5. Basis of Student Assessment (Weighting)
(Should be linked directly to learning outcomes.)

(a)	Assignments	10%
(b)	Quizzes	30%
(c)	Exams	60%
(d)	Other (eg, Attendance, Project, Group Work)	

6. Grading System

(No changes are to be made to this section, unless the Approved Course Description has been forwarded through EDCO for approval.)

Standard Grading System (GPA)

Percentage	Grade	Description	Grade Point Equivalency
$95-100$	$\mathrm{~A}+$		9
$90-94$	A		8
$85-89$	$\mathrm{~A}-$		7
$80-84$	$\mathrm{~B}+$		6
$75-79$	B		5
$70-74$	$\mathrm{~B}-$		4
$65-69$	$\mathrm{C}+$		3
$60-64$	C		2
$50-59$	D		1
$0-49$	F	Minimum level has not been achieved.	0

Temporary Grades

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy at camosun.ca or information on conversion to final grades, and for additional information on student record and transcript notations.

Temporary Grade	Description
I	Incomplete: A temporary grade assigned when the requirements of a course have not yet been completed due to hardship or extenuating circumstances, such as illness or death in the family.
IP	In progress: A temporary grade assigned for courses that are designed to have an anticipated enrollment that extends beyond one term. No more than two IP grades will be assigned for the same course.

CW	Compulsory Withdrawal: A temporary grade assigned by a Dean when an instructor, after documenting the prescriptive strategies applied and consulting with peers, deems that a student is unsafe to self or others and must be removed from the lab, practicum, worksite, or field placement.

Temporary grades are assigned for specific circumstances and will convert to a final grade according to the grading scheme being used in the course. See Grading Policy E-1.5 at camosun.ca for information on conversion to final grades, and for additional information on student record and transcript notations.

7. Recommended Materials or Services to Assist Students to Succeed Throughout the Course

LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College calendar, at Student Services or the College web site at camosun.ca.

STUDENT CONDUCT POLICY

There is a Student Conduct Policy which includes plagiarism. It is the student's responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, at Student Services and on the College web site in the Policy Section.

