Math 251 Class Outline
 CAMOSUN COLLEGE
 MATHEMATICS DEPARTMENT

Calendar Description

This course is restricted to students in the Engineering Bridge (UVic) program. Topics: complex numbers, linear systems and matrices, matrix operations, determinants, vectors in 2-space and 3-space, vector spaces, linear dependence and independence, orthogonality, eigenvalues and eigenvectors and linear transformations. Engineering applications are provided throughout the course.

Course Information

Instructors: e-mails: web site:	Drs. Peter J. Trushel and Chi-Ming Leung trushel@camosun.bc.ca and leungc@camosun.bc.ca
web tools:	$\underline{\text { http://trushel.disted.camosun.bc.ca/math251/home.php }}$
Offices:	http://trushel.disted.camosun.bc.ca/etc
Phones:	CBA 151 and CBA 147 Interurban Campus
Office hours:	(250) 370-4490 and (250) 370-4448 by appointment or posted

Organization

OFFERED:	4 th Quarter
CREDIT:	3
IN-CLASS WORKLOAD:	6 hours lecture/week
OUT-OF-CLASS WORKLOAD:	6 hours/week

Objectives

To learn the concepts, techniques and applications associated with vectors and matrices.

Text

Howard Anton and Chris Rorres, Elementary Linear Algebra, Edition 9, Wiley, 2005.

Evaluation

4 term tests:	50%
Comprehensive final exam:	50%

Percentage to Letter Grade Conversion

Percentage	Letter Grade	Percentage	Letter Grade
95 to 100	A+	70 to 74	B-
90 to 94	A	65 to 69	C+
85 to 89	A-	60 to 64	C
80 to 84	B+	50 to 59	D
75 to 79	B	below 50	F

Recommended Calculator

This course contains detailed information about the use of a calculator in linear algebra. Since this material will be based on the Texas Instruments TI-89 or TI-89 Titanium, it is strongly recommended that students purchase one of these calculators.

Outline

System of Linear Equations and Matrices

Text(Week)	Hours Topic	
1.1 (1)	read	Introduction to Systems of Linear Equations
$1.2(1)$	1	Gaussian Elimination
$1.3(1)$	1	Matrices and Matrix Operations
$1.4(1)$	1	Inverses; Rules of Matrix Arithmetic
1 July, 2005		Canada Day
$1.5(2)$	2	Elementary Matrices and a Method for Finding A
$1.6(2)$	1	Further Results on Systems of Equations and Invertibility
$1.7(2)$	1	Diagonal, Triangular, and Symmetric Matrices
Total hours	7	

Determinants

Text(Week)	Hours Topic	
$2.1(2)$	1	Determinants by Cofactor Expansion
$2.2(2,3)$	2	Evaluating Determinants by Row Reduction
$2.3(3)$	2	Properties of the Determinant Function
Total hours	$\mathbf{5}$	

Vectors in 2-Space and 3-Space

Text(Week)	Hours Topic	
3.1 (3)	read	Introduction to Vectors (Geometric)
$3.2(3)$	1	Norm of a Vector; Vector Arithmetic
3.3 (3, 4)	2	Dot product; Projections
15 July 2005		Test 1
3.4 (4)	2	Cross Product
3.5 (4)	2	Lines and Planes in 3-Space
Total hours	7	

Euclidean Vector Spaces

Text(Week)	Hours Topic	
$4.1(4)$	1	Euclidean \mathbf{n}-Space
4.2 (5)	2	Linear Transformations from \mathbf{R}^{n} to \mathbf{R}^{m}
Total hours	3	

General Vector Spaces

Text(Week)	Hours	Topic
5.1 (5)	1	Real Vector Spaces
5.2 (5)	1	Subspaces
$5.3(5,6)$	2	Linear Independence
29 July 2005		Test 2
1 August 2005		BC Day
5.4 (6)	2	Basis and Dimension
5.5 (6)	2	Row Space, Column Space, and Nullspace
5.6 (7)	2	Rank and Nullity
Total hours	10	

Outline (Continued)

Inner Product Spaces

Text(Week)	Hours Topic	
$6.1(7)$	2	Inner Products
$6.2(7,8)$	2	Angle and Orthogonality in Inner Product Spaces
$\mathbf{1 2}$ August 2005	Test $\mathbf{3}$	
$6.3(8)$	2	Orthonormal Bases; Gram-Schmidt Process
$6.4(8)$	2	Best Approximation; Least Squares
$6.5(8)$	1	Change of Basis
$6.6(9)$	1	Orthogonal Matrices
Total hours	$\mathbf{1 0}$	

Eigenvalues, Eigenvectors

Text(Week)	Hours Topic	
$7.1(9)$	2	Eigenvalues and Eigenvectors
7.2 (9)	2	Diagonalization
26 August 2005	Test 4	
Total hours	4	

Linear Transformations

Text(Week)	Hours Topic	
$8.1(10)$	2	General Linear Transformations
$8.2(10)$	2	Kernel and Range
$8.4(10)$	2	Matrices of General Linear
Total hours	6	

Additional Topics

Text(Week)	Hours Topic	
5 September 2005	Labour Day	
11.1 (11)	1	Constructing Curves and surfaces through Specified Points
$9.2(11)$	1	Geometry of Linear Operators on \mathbf{R}^{2}
Total hours	2	

Complex Vector Spaces

Text(Week)	Hours Topic	
$10.1(1)$	1	Complex Numbers
$10.2(1)$	1	Division of Complex Numbers
$10.3(1)$	1	Polar Form of a Complex Number
Total hours	3	

Lecture	$\mathbf{5 7}$ hours
Tests	$\mathbf{4}$ hours
Holidays	$\mathbf{5}$ hours
Total	$\mathbf{6 6}$ hours

