MATH 262 Applied Differential Equations

This course is restricted to students in the Civil Engineering UBC Bridge Program. It provides an introduction to modern approach to the solution of differential equations often encountered in Science and Engineering.

Instructor: Gilles Cazelais

Office: CBA 158 (phone number: 370-4495) Office hours: http://www.camosun.bc.ca/~cazelais/schedule.html Email address: cazelais@camosun.bc.ca Course web page: http://www.camosun.bc.ca/~cazelais/262.html

Textbook

Dennis G. Zill, A First Course in Differential Equations with Modeling Applications, 7th Edition, Brooks/Cole, 2001.

Evaluation

\cdot Three term tests:	40%
\cdot Comprehensive final exam:	60%

Tentative Schedule

Test 1	April 29	Test 2	May 20	Test 3	June 10
--------	----------	--------	--------	--------	---------

Final exams are held from June 20 - 24. You **must** be available at the scheduled time.

The following percentage conversion to letter grade will be used:

Percentage:	0 - 49	50 - 59	60 - 64	65 - 69	70 - 74	75 - 79	80 - 84	85 - 89	90 - 94	95 - 100
Letter grade:	\mathbf{F}	D	\mathbf{C}	C+	B-	В	B+	A-	А	A+

Course Outline

- 1. INTRODUCTION TO DIFFERENTIAL EQUATIONS
 - \cdot Definitions and Terminology (section 1.1)
 - \cdot Initial-Value Problems (section 1.2)
- 2. FIRST-ORDER DIFFERENTIAL EQUATIONS
 - \cdot Separable Variables (section 2.2)
 - \cdot Linear Equations (section 2.3)
 - \cdot Exact Equations (section 2.4)
 - \cdot Solutions by Substitutions (section 2.5)
 - · A Numerical Solution (section 2.6)

- 3. Modeling with Differential Equations
 - · Linear Equations (section 3.1)
 - · Nonlinear Equations (section 3.2)
- 4. DIFFERENTIAL EQUATIONS OF HIGHER-ORDER
 - Preliminary Theory: Linear Equations (section 4.1)
 - \cdot Reduction of Order (section 4.2)
 - \cdot Homogeneous Linear Equations with Constant Coefficients (section 4.3)
 - \cdot Undetermined Coefficients Superposition Approach (section 4.4)
 - \cdot Variation of Parameters (section 4.6)
 - · Cauchy-Euler Equations (section 4.7)
 - \cdot Solving Systems of Linear Equations by Elimination (section 4.8)
- 5. Modeling with Higher-Order Differential Equations
 - · Linear Equations: Initial-Value Problems (section 5.1)
 - · Linear Equations: Boundary-Value Problems (section 5.2)
 - \cdot Nonlinear Equations (section 5.3)
- 6. Series Solutions of Linear Equations
 - · Solutions About Ordinary Points (section 6.1)
 - \cdot Solutions about Singular Points (section 6.2)
- 7. LAPLACE TRANSFORMS
 - \cdot Definition of the Laplace Transform (section 7.1)
 - \cdot Inverse Transform and Transform of Derivatives (section 7.2)
 - \cdot Translation Theorems (section 7.3)
 - · Additional Operational Properties (section 7.4)
 - \cdot Dirac Delta (section 7.5)
- 8. Systems of Linear First-Order Differential Equations
 - Preliminary Theory (section 8.1)
 - Homogeneous Linear Systems with Constant Coefficients (section 8.2)
 - \cdot Variation of Parameters (section 8.3)
 - \cdot Matrix Exponential (section 8.4)
- 9. Numerical Solutions of ODE
 - \cdot Euler Methods and Error Analysis (section 9.1)
 - \cdot Runge-Kutta Methods (section 9.2)
 - \cdot Multistep Methods (section 9.3)
- 10. Phase Plane Analysis
 - Introduction to Phase Plane Analysis (Handout)

* * *