MATH 174B Mathematics for Electronics 4

Instructor: Gilles Cazelais

Office: CBA 158 (phone number: 370-4495)

Office hours: http://www.camosun.bc.ca/~cazelais/schedule.html

Email address: cazelais@camosun.bc.ca

Course web page: http://www.camosun.bc.ca/~cazelais/174b.html

Textbook

Basic Technical Mathematics with Calculus (7th Edition) by Allyn J. Washington.

Evaluation

\cdot Three term tests:	50%	or	
Comprohensive final even	5007		Comprehend

 \cdot Comprehensive final exam: 50% Comprehensive final exam: 100%

Tentative Schedule

	Test 1	January 28	Test 2	February 18	Test 3	March 11
--	--------	------------	--------	-------------	--------	----------

The following percentage conversion to letter grade will be used:

Percentage:	0 - 49	50 - 59	60 - 64	65 - 69	70 - 74	75 - 79	80-84	85-89	90 - 94	95 - 100
Letter grade:	\mathbf{F}	D	\mathbf{C}	C+	B-	В	B+	A-	А	A+

Course Outline

- 1. Applications of the Derivatives
 - Tangents and Normals (section 24.1)
 - Newton's Methods (section 24.2)
 - Curvilinear Motion (section 24.3)
 - Related Rates (section 24.4)
 - Using Derivatives in Curve Sketching (section 24.5)
 - More on Curve Sketching (section 24.6)
 - · Applied Maximum and Minimum Problems (section 24.7)
 - $\cdot\,$ Differentials and Linear Approximations (section 24.8)
- 2. Differentiation of Transcendental Functions
 - \cdot Derivatives of the Sine and Cosine Functions (section 27.1)
 - Derivatives of the Other Trigonometric Functions (section 27.2)
 - Derivatives of the Inverse Trigonometric Functions (section 27.3)
 - Derivatives of the Logarithmic Function (section 27.5)
 - Derivatives of the Exponential Function (section 27.6)
- 3. INTEGRATION
 - Antiderivatives (section 25.1)
 - $\cdot\,$ The Indefinite Integral (section 25.2)
 - \cdot The Area Under a Curve (section 25.3)
 - \cdot The Definite Integral (section 25.4)
 - · Numerical Integration: The Trapezoidal Rule (section 25.5)
 - \cdot Simpson's Rule (section 25.6)
- 4. Applications of Integration
 - · Applications of The Definite Integral (section 26.1)
 - Areas by Integration (section 26.2)
 - \cdot Volumes by Integration (section 26.3)

* * *