PHYSICS DEPARTMENT COURSE OUTLINE

PHYS 191 PHYSICS 1 for CIVIL AND MECHANICAL ENGINEERING TECHNOLOGY

A physics course enriched with applications relevant to civil and mechanical engineering technologies. Topics include measurement and units, vectors, kinematics, dynamics, work, energy and power, statics and rotational dynamics.

OFFERED:	Q1
CREDIT:	3
IN-CLASS WORKLOAD:	5 lecture, 2 lab (alt. weeks)
PRE-REQUISITES:	Physics 11 or departmental
	assessment
	Physics 151 recommended

REQUIRED MATERIALS:

Textbook: <u>"Physics"</u>, 6th edition, Cutnell, J.D. and Johnson, K.W. Physics 191/192 lab manual Scientific calculator (any calculator is acceptable with the exception of personal computers) Graph paper (must be either 10 lines/inch or millimeter graph paper)

DEPARTMENT POLICIES REGARDING TESTING:

- 1. Students must write quizzes, tests, midterm tests, etc., on the date and time assigned by the instructor. Instructors are not required to provide make-up tests. At their discretion, instructors may waive a test or provide a make-up test only in the event of documented illness or other extenuating circumstances.
- The final exam will cover the entire course and will be 3 hours long. As stated in the current college calendar on page 39, " students are expected to write tests and final exams at the scheduled time and place." Exceptions will only be considered due to **emergency** circumstances as outlined in the calendar. Holidays or scheduled flights are not considered to be emergencies.
- 3. Midterm tests may be discounted from the grading distribution (see below) if all term work, including term tests, labs, seminars, and assignments, has been completed and is **60% or higher**. In this case, the final grade for the course may be based on a combination of the final exam and the lab mark.

DEPARTMENT POLICIES REGARDING LABS:

- 1. All assigned laboratory exercises and reports must be completed prior to the date of the final exam with an overall grade of 60% in order to obtain credit for this course. A lab may be waived or made up at a later time during the term only in the case of documented illness or other extenuating circumstances.
- 2. A student who is repeating a Physics course does not have to complete the laboratory exercises a second time if an average lab grade of 70% or better was obtained.

STUDY TIME

It is recommended that between 5 and 10 hours per week (or more for students with a weak background) be spent studying for this course outside of class time.

GRADING

The standard mark distribution for this course is as follows:

Final Exam	50%
Midterms and other work	40%
Lab Reports	10%
	100%

This distribution may be amended by the instructor (see your Instructor's Information sheet).

GRADE SCALE

Final letter grades are normally assigned as follows (subject to above conditions):

Percentage	Letter Grade
95 to 100	A+
90 to 94	А
85 to 89	A-
80 to 84	B+
75 to 79	В
70 to 74	В-
65 to 69	C+
60 to 64	С
50 to 59	D
below 50	F

OUTLINE:

1. Measurement

- 1.1 Concept and process
- 1.2 Significant figures
- 1.3 Systeme Internationale (SI)
- 1.4 British and practical units
- 1.5 Unit conversions review
- 1.6 Error analysis

2. Vectors

- 2.1 Representation of vectors and specification of directions
- 2.2 Addition and subtraction of vectors
- 2.3 Scalar and vector multiplication
- 2.4 Component method
- 2.5 Application of sine and cosine laws to vector problems
- 2.6 Concurrent forces in equilibrium

3. Kinematics

- 3.1 Kinematic quantities
 - 3.1.1 Position, distance and displacement
 - 3.1.2 Speed and velocity
 - 3.1.3 Acceleration
- 3.2 Uniformly accelerated motion
- 3.3 One-dimensional kinematic problems
 - 3.3.1 Free-fall
 - 3.3.2 Two-body problems
- 3.4 Two-dimensional kinematic problems
 - 3.4.1 Projectiles and trajectories

4. Dynamics

- 4.1 Newton's laws of motion and conceptual problems
- 4.2 Concept of force
 - 4.2.1 Normal forces
 - 4.2.2 Static and kinetic friction
 - 4.2.3 Tension forces
- 4.3 Newton's second law of motion
 - 4.3.1 Free-body diagrams
 - 4.3.2 Problem-solving techniques
 - 4.3.3 Inclined planes
 - 4.3.4 Connected systems
 - 4.3.5 Two-dimensional problems
- 4.4 Equilibrium

- 5.1 Centripetal acceleration
- 5.2 Centripetal force

6. Work, Energy and Power

- 6.1 Definition and concept
- 6.2 Types of mechanical energy
 - 6.2.1 Kinetic energy
 - 6.2.2 Potential energy
- 6.3 Work-energy theorem conservation of energy
- 6.4 Problems involving work and energy
 - 6.4.1 Without dissipative forces
 - 6.4.2 With dissipative forces
- 6.5 Power as rate of doing work and change of energy

7. Physics of a Rigid Body

- 7.1 Center of mass and center of gravity calculations
- 7.2 Torque
- 7.3 Equilibrium of a rigid body
- 7.4 Rotational intertia
 - 7.4.1 Parallel axis theorem
 - 7.4.2 Perpendicular axis theorem
 - 7.4.3 Methods of symmetry
- 7.5 Rotational kinematics
 - 7.5.1 Definition of rotational kinematic quantities and units
 - 7.5.2 Formulas for uniformly accelerated rotation
 - 7.5.3 Relation between linear and angular quantities
- 7.6 Rotational dynamics
 - 7.6.1 Dynamic equation
 - 7.6.2 Work, rotational kinetic energy, power

8. Simple Machines

- 8.1 General theory
 - 8.1.1 Mechanical advantage
 - 8.1.2 Efficiency
- 8.2 Application: Different types of machines