GEOS 100 PHYSICAL GEOLOGY Section 001

Course Outline Fall 2004

Prerequisite: English 12,.Chem 11 or Chem 060.

1. Instructor

Alan Gell Office Fisher 344-B

Phone 370-344B

gella@camosun.bc.ca

Office Hours: as posted M,T,W 12:30-13:20, Thursday 10:30-11:20

2. Intended Learning Outcomes

After successfully completing all components of this course students will be able to:

- 1. Recognize mineral names, physical properties, chemical composition, formation
- 2. Identify ~50 common rock-forming minerals on their physical properties
- 3. Infer how samples of some rocks have formed: process and conditions
- 4. Infer the relationship of rock-forming processes to plate tectonics
- 5. Describe & interpret textures of igneous, sedimentary & metamorphic rocks
- 6. Describe mineral & chemical variations of abundant rock types
- 7. Classify common rocks based on texture and composition
- 8. Relate a range of geological processes and identify their products
- 9. Understand the natural resources, their settings, limits, value and environments
- 10. Relate environmental conditions to geological settings and products
- 11. Apply techniques to determine the chronological order of events in Earth's history
- 12. Calculate absolute radiomentric ages of Earth materials and events
- 13. Identify common geologic structures & their representation on maps.
- 14. Identify, describe and interpret geological structures in three dimensions
- 15. Determine the relationship of geological structures and plate tectonic boundaries
- 16. Determine the location of an earthquake from seismic data
- 17. Use seismograms to infer relative earth movements on faults
- 18. Relate the nature and distribution of major earth features such as mountains, volcanoes and earthquakes to plate tectonics.
- 19. Geological and scientific vocabulary of 2000-3000 terms and definitions 20.

3. Required Materials

(a) Texts

Earth, Canadian ed.; Tarbuck, Lutgens and Tsujita, Pearson publ.

Lab. Manual in Physical Geology, AGI, 6th ed., Busch and Tasa

Recommended reading of other geology texts, a geological glossary (dictionary), a mineral identification book and web based research, readings, real and virtual field trips.

(b) Other

Hand lens, protractor, drawing compass, coloured pencils.

4. Instruction 14 weeks

Classroom 3 hours

Lab 3 hours)

Local Field Trips during lab time & 2 weekend day trips on 2 weeks notice

5. Assessment

- (a) Lab exercises (due in lab at the end of lab period) 10 X 2.5%
- (b) Lab tests (1 hr tests, 3 hr final: minerals, rocks, tectonics) 5%, 5%, 10%
- (c) Written exams 15%, 15%, 25%

6. Grading system

Marking Scheme:

A+	100-95	A	94-90	A-	89-85		
\mathbf{B} +	84-80	В	79-75	B-	74-70		
C+	69-65	C	64-60	D	59-50	F	< 50

7. Sequence of topics (subject to modification and repetition):

Ch.1 Introduction: Geological hazards, resources, environment, processes and products Internal processes, heat engine and plate tectonics. External (surficial processes) Observations and Hypothesis Testing, The notion of "Deep Time" (*Lab 1*)

Ch.2& 21 Matter & minerals: Elements, atoms, ions, Mineral compositions, crystal structure & physical properties. Mineral environments, assemblages & resources (*Lab 3 - 2 parts*)

Ch.3& 21 Igneous rocks, volcanoes & plutons, and resources, magmas, properties, mineralogy, textures and environments of formation (*Lab 4*)

Ch.4 Volcanism, activity & landforms, textures, hazards, geothermal resources (Lab 5)

Ch.5& 9 Weathering mechanical and chemical, erosion and mass wasting

(Midterm test 1 week 5 and Lab Test 1 on Minerals week 6)

Ch.6 & 10-14 inclusive Sedimentary processes, environments, sediments, facies, rock types and resources (*Lab 6*)

Ch.7& 21 Metamorphism, metamorphic rocks settings, textures, formation and resources (Lab 7) and Lab Test 2 on Rocks around week 8

Ch.8 Geologic time: relative and absolute, geologic dating techniques (*Lab 8*)

Ch.15 Crustal deformation, tectonics and structural geology (*Lab 10*)

Ch.16 & 17 Earthquakes: types, recurrence, location, effects, tectonic settings & Earth's interior: Core, Mantle & Crust, Planetary formation, geotherms & heat flow (*Lab 16*)

Ch.18-21 inclusive Plate tectonics, Ocean floor, basalts, active tectonics, ore formation, unique environments, plate boundaries and motions, mantle convection, Mountain building, evolution of continents, resources (*Lab 2*)

Lecture notes only: Canadian Geology and development of western Canada and local geology (**Lab Test 3 in last week: time, structure, earthquakes and plate tectonics**)