COURSE SCHEDULE - BIOLOGY 206B - Fall 2004

Instructor:	Anna Colangeli
Office:	F - 340D
Phone:	370-3459
web page:	http://webct.camosun.bc.ca

The schedule, which follows, is an attempt to outline the weekly activities of the class. It is subject to change or modification as the need arises.

Week	Date	Lecture	Labs
1	Sept. 8-9	Introduction to Environmental	Tissue Culture techniques
		Biotechnology	Introduction to Mount. Washington field
			trip
			Lab. 1 - Characteristics of
2	Sept. 15-16	Review of DNA and Molecular	Agrobacterium
		Biology	Lab. 2 Transformation
			Mount Washington sample analysis
			 Lab. 1 - Characteristics of
3	Sept. 22-23	Tools in Biotechnology -	Agrobacterium
		Agrobacterium	Lab. 2 Transformation
			 Mount Washington sample analysis
4	Sept. 29-30	Tools: Recombinant DNA	Lab. 2 Transformation
		Technology - Restriction	 Lab. 3 Isolation of DNA
		enzymes.	Mount Washington sample analysis
5	Oct. 6-7	Tools: Gel electrophoresis	Lab. 2 Transformation
			Lab. 4 Protoplast fusions
			Lab. 3 Quantification of DNA
6	Oct. 13-14	Quiz #1 - individual	Lab. 2 Transformation
			Lab. 5 Restriction digests
7	Oct. 20-21	NO LECTURE	NO Lab
8	Oct. 27-28	Tools: Polymerase Chain	Lab. 2 Transformation
		Reaction	Lab. 5 electrophoresis of digests
9	Nov. 3-4	Tools: Gene Cloning	Lab. 2 Transformation
		5	Lab. 6 PCR
10	Nov. 10	Biotechnology and Agriculture	Remembrance Day
			NO Lab
11	Nov. 17-18	Biotechnology and the	Lab. 2 Transformation
		Environment	Lab. 7 Cloning of PCR product
12	Nov. 24-25	Presentations	Lab. 2 Transformation
			Lab. 2: Protein Bioassay
			Lab. 7 Cloning of PCR product
13	Dec. 1-2	Presentations	Lab. 8 phytoremediation
1			
			Completion of all labs

Exam #1	15%
Exam #2 (during final exam period)	25%
Presentation	15%
Web page	5%
Lab. Worksheets and assignments	40%

CAMOSUN COLLEGE ENVIRONMENTAL TECHNOLOGY DEPARTMENT

ENVR 206B ENVIRONMENTAL BIOTECHNOLOGY

Course Objectives

The student will be able to:

- 1. Culture and subculture plant explants under sterile conditions.
- 2. Successfully use the tools of biotechnology including DNA extraction techniques, restriction enzymes, *Agrobacterium*, agarose gel electrophoresis, PCR, PAGE, protein identification and protoplast fusion.
- 3. Be familiar and competent in molecular biology techniques.
- 4. Explain the principles of Biomimicry, bioremediation and phytoremediation.
- 5. Explain the principles of genetic engineering and biotechnological techniques and their application to agriculture and the environment.
- 6. Explain the principles and list the factual content of the course.

Course Outline

1. Introduction to Environmental Biotechnology

Overview of biotechnology pertaining to the Environmental field.

2. Plant Tissue Culture Techniques

Students should competently and efficiently work in laminar flow hoods, employing sterile techniques to culture and subculture plant tissue explants.

3. Plant Transformation and Molecular Biology

An overview of the principles and techniques involved in the transgenics or engineering of "designer " organisms for industry, agriculture or for use in the environment. Use *Agrobacterium* and tissue culture techniques to introduce a foreign gene into selected plants.

4. Biological Degradation, Bioremediation and Phytoremediation

A look at the increasing use of microorganisms, microbial metabolic processes and plants to break down environmental poisons and clean soil and water.

5. PowerPoint Presentation

Groups of students will research an organism or methodology that has been or is being used in Biofuels, biomimicry, biodegradation, bioremediation, and phytoremediation or is a product of genetic engineering. The students will incorporate their findings into a PowerPoint presentation and present these to the other class members.

6. Websites

Each student will create a web site of useful links on the topic of their choice.

7. Final Exam

Understand the basic principles of the course.