Math 251 Class Outline CAMOSUN COLLEGE MATHEMATICS DEPARTMENT

Calendar Description

This course is restricted to students in the Engineering Bridge (UVic) program. Topics: complex numbers, linear systems and matrices, matrix operations, determinants, vectors in 2-space and 3-space, vector spaces, linear dependence and independence, orthogonality, eigenvalues and eigenvectors and linear transformations. Engineering applications are provided throughout the course.

Course Information

Instructors:	Drs. Peter J. Trushel and Chi-Ming Leung		
e-mails:	trushel@camosun.bc.ca and leungc@camosun.bc.ca		
web site:	http://www.camosun.bc.ca/~trushel/math251		
web tools:	http://ccins.camosun.bc.ca/~trushel/etc/		
Offices:	CBA 151 and CBA 147 Interurban Campus		
Phones:	(250) 370-4490 and (250) 370-4448		
Office hours:	by appointment or posted		

Organization

OFFERED:	4th Quarter
CREDIT:	3
IN-CLASS WORKLOAD:	6 hours lecture/week
OUT-OF-CLASS WORKLOAD:	6 hours/week

Objectives

To learn the concepts, techniques and applications associated with vectors and matrices.

Text

Howard Anton and Chris Rorres, Elementary Linear Algebra, Edition 8E, Wiley, 1997.

Evaluation

4 term tests:	50%
Comprehensive final exam:	50%

Percentage to Letter Grade Conversion

Percentage	Letter Grade
95 to 100	A+
90 to 94	А
85 to 89	A-
80 to 84	B+
75 to 79	В
70 to 74	В-
65 to 69	C+
60 to 65	С
50 to 59	D
below 50	F

Outline

System of Linear Equations and Matrices

Text(Week)	Hours Topic		
1.1 (1)	read	Introduction to Systems of Linear Equations	
1.2 (1)	1	Gaussian Elimination	
1.3 (1)	1	Matrices and Matrix Operations	
1.4 (1)	2	Inverses; Rules of Matrix Arithmetic	
1 July, 2004		Canada Day	
1.5 (2)	2	Elementary Matrices and a Method for Finding A ⁻¹	
1.6 (2)	1	Further Results on Systems of Equations and Invertibility	
1.7 (2)	1	Diagonal, Triangular, and Symmetric Matrices	
Total hours	8		

Determinants

Text(Week)	Hour	rs Topic
2.1 (2)	1	The Determinant Function
2.2 (2)	1	Evaluating Determinants by Row Reduction
2.3 (3)	1	Properties of the Determinant Function
2.4 (3)	2	Cofactor Expansion; Cramer's Rule
Total hours	5	

Vectors in 2-Space and 3-Space

Text(Week)	Hour	's Topic
3.1 (3)	read	Introduction to Vectors (Geometric)
3.2 (3)	1	Norm of a Vector: Vector Arithmetic

3.2 (3)	1	Norm of a Vector; Vector Arithmetic
3.3 (3, 4)	2	Dot product; Projections
16 July 2004		Test 1
3.4 (4)	2	Cross Product
3.5 (4)	2	Lines and Planes in 3-Space
Total hours	7	

Euclidean Vector Spaces

Text(Week)	Hour	rs Topic
4.1 (4)	1	Euclidean n- Space
4.2 (5)	2	Linear Transformations from \mathbf{R}^{n} to \mathbf{R}^{m}
Total hours	3	

General Vector Spaces

Text(Week)	Hours	Торіс
5.1 (5)	1	Real Vector Spaces
5.2 (5)	1	Subspaces
5.3 (5, 6)	2	Linear Independence
30 July 2004		Test 2
2 August 2004		BC Day
5.4 (6)	2	Basis and Dimension
5.5 (6)	2	Row Space, Column Space, and Nullspace
5.6 (7)	2	Rank and Nullity
Total hours	10	

Outline (Continued)

Inner Product Spaces

Text(Week)	Hour	rs Topic
6.1 (7)	2	Inner Products
6.2 (7, 8)	2	Angle and Orthogonality in Inner Product Spaces
13 August 20	04	Test 3
6.3 (8)	2	Orthonormal Bases; Gram-Schmidt Process
6.4 (8)	2	Best Approximation; Least Squares
6.5 (8, 9)	2	Orthogonal Matrices; Change of Basis
Total hours	10	

Eigenvalues, Eigenvectors

Text(Week)	Hours	Topic
7.1 (9)	2	Eigenvalues and Eigenvectors
7.2 (9)	2	Diagonalization
27 August 200	4	Test 4
Total hours	4	

Linear Transformations

Text(Week)	Hours Topic	
8.1 (10)	2	General Linear Transformations
8.2 (10)	2	Kernel and Range
8.4 (10)	2	Matrices of General Linear
Total hours	6	

Additional Topics

Text(Week)	Hour	rs Topic
6 September	2004	Labour Day
11.1 (11)	1	Constructing Curves and surfaces through Specified Points
9.2 (11)	1	Geometry of Linear Operators on \mathbf{R}^2
Total hours	2	

Complex Vector Spaces

Text(Week)	Hours Topic	
10.1 (1)	1	Complex Numbers
10.2 (1)	1	Modulus; Complex Conjugate; Division
10.3 (1)	1	Polar Form; DeMoivre's Theorem
Total hours	3	

Lecture	58 hours
Tests	4 hours
Holidays	4 hours
Total	66 hours