GEOG 214 DIGITAL GEOMATICS

Instructor

Tim Elkin. Telephone: 370-3115 E-mail: elkint@camosun.bc.ca Office: Ewing 238 Office hours: as posted

Course Description

The course introduces students to the basics of digital geomatics including geographic information systems and digital remote sensing.

Learning Outcomes

On completion of the course students should be able to:

- demonstrate an understanding of the basic concepts in digital geomatics, including concepts in GIS, digital mapping and database systems, and digital remote sensing
- demonstrate an ability to handle spatial data through the application of GIS and remote sensing software

<u>Text</u>

The following two texts are available in the college bookstore. Ian Heywood, <u>An Introduction to Geographical Information Systems</u>. 2002. Prentice Hall

Geography 214 Digital Geomatics: Course Manual

In addition, the Canada Centre for Remote Sensing (CCRS) has an on-line tutorial *Fundamentals of Remote Sensing* <u>http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/fundam_e.html</u> Several chapters from the tutorial form the basis of the remote sensing material discussed in the course.

Text Support

The Heywood text provides a set of multiple choice questions for each chapter at the website <u>www.booksites.net/heywood</u>. Click *An Introduction to Geographical Information Systems second edition,* click *Student Resources.* Students are strongly encouraged to use these questions to test their understanding of the concepts introduced in each chapter. Many of these questions will form part of the in-class tests.

Evaluation

Evaluation is based on a series of tests, lab and class exercises and a project. **Tests**. Thre is a mid-term (20%) and a final test (30%). The format of the two tests will be discussed in class.

Lab and class exercises. All lab and class exercises are due the following week at Thursday's class.

Definitions exercise. Students prepare a crossword based on remote sensing and GIS definitions. There are several internet sites offering crossword facilities, e.g., <u>http://puzzlemaker.school.discovery.com/</u>; <u>www.eclipsecrossword.com</u> Assignment due in class on April 8.

Project. Students use GIS and remote sensing software in problem solving.

Assignments handed in late will have a **10% penalty** and assignments over one week late will not be accepted.

Evaluation summary

Tests I and II	50%
Lab and class exercises	40%
Final project	10%

Topic Outline

Topic Outlin Week of	<u>1e</u>
Jan 5	Introduction to the course What is digital geomatics? What is GIS? Heywood, Ch. 1
	GIS Lab 1: Creating an ArcView Project
Jan 12	Spatial data I Heywood, Ch. 2
	GIS Lab 2: Projections
Jan 19	Spatial data II Collecting spatial data: GPS data, Census data Heywood, Ch. 2
	GIS Lab 3: Spatial data
Jan 26	Spatial data III: Remotely sensed data Introduction to remote sensing science Satellites and sensors Handling remotely sensed images
	CCRS, Ch. 1 Introduction; Ch. 2 Sensors
	Remote sensing Exercises 1, 2, and 3

Feb 2	Spatial data modelling: vector data Heywood, Ch. 3 GIS Lab 4: Vector Data
Feb 9	Spatial data modelling: raster data READING BREAK (No class Feb 13)
Feb 16	Test GIS Lab 5: Raster Data
Feb 23	Attribute data management Heywood, Ch. 4 GIS Lab 6: Working with attribute data
March 1	Data input and editing Introduction to Project Heywood, Ch. 5 GIS Lab 7: Data input
March 8	Data analysis Heywood, Ch. 6 GIS Lab 8: Raster analysis
March 15	Data analysis Heywood, Ch. 6 GIS Lab 9: Vector analysis
March 22	Image analysis Image georectification: preprocessing images for analysis
	CCRS, Ch. 4 Image Analysis
	Remote sensing Exercise 5 and 6
	Image enhancement and classification The concept of spectral similarity and the use of categorization and post-categorization enhancement in multispectral imagery Remote sensing manual Exercises 6 and 8
	Demote concine project

Remote sensing project Analyzing ozone damage to milkweed plants March 29 Image analysis Image transformation The use of spectral ratioing (vegetation index) and image subtraction (temporal change)

CCRS, Ch. 4 Image Analysis; Ch.5 Applications

Remote sensing Exercises 7 and 9

Remote sensing project

Analyzing stress in soybean crop

April 5 Output: from new maps to enhanced decisions Heywood, Ch. 8 GIS Lab 10: Spatial analysis

GIS project

Analyzing neighbourhood demographics in Victoria Analyzing temperature patterns in BC

GRADING SYSTEM

95 -100% A+ 90 - 94% A 85 - 89% A-	Superior levels of achievement
80 - 84% B+ 75 - 79% B 70 - 74% B-	High levels of achievement
65 - 69% C+ 60 - 64% C 50 - 59% D 0 - 49% F	Satisfactory level of achievement Sufficient level of achievement Minimum level of achievement Minimum level is not achieved