

CAMOSUN COLLEGE Trades and Technology Electronics and Computer Engineering

CSNT 160 Internet of Things: Connecting and Securing Devices Fall 2024

COURSE OUTLINE

Online.camosun.ca

Please note: This outline will not be kept indefinitely. It is recommended students keep this outline for their records, especially to assist in transfer credit to post-secondary institutions.

Instructor Information

(a) Instructor	Gurbinder Dhade	
(b) Office hours	TBA	
(c) Location	CBA 122B	
(d) Phone	250 370 4450	Alternative:
(e) E-mail	dhadeg@camosun.bc.ca	

Students will learn in this course how to connect and secure "Internet of Things" devices. It starts with a brief introduction to basic electronic theory, component identification, and lab equipment usage. Next IoT theory explores the methods for remotely controlling and monitoring mechanical systems in industrial, commercial and home applications. Students then move on to IoT system architecture design and security, followed by specific vulnerabilities within the devices themselves, their communication protocols, and applications they run. Students will get hands-on practice setting up and configuring various automated systems.

The student will be responsible for keeping up with the required reading and lab exercises. Notes and lab activities will be provided through D2L and related web sites.

Students who successfully complete this course will be able to:

- describe basic electronic theories and components;
- practice building simple electronic circuits and demonstrate the use of electronic test equipment;
- > discuss trends, terms and concepts relating to Internet of Things devices;
- > describe the concepts of industrial, commercial, and home automation/control;
- > use interfacing software to configure and provision an automated environment;
- describe IoT system architectures and their security vulnerabilities;
- > perform risk and vulnerability assessments on IoT devices and systems; and
- > apply threat mitigation procedures to IoT devices and systems.

Course Delivery

Rev 2.0 2 September 2024

This course will have face to face seminars and labs according to the Fall schedule.

Course curriculum is provided through the Cisco Skill for All website <u>https://skillsforall.com/</u> and Cisco Netacad website <u>https://www.netacad.com/</u> using the following Cisco course material:

Introduction to IoT and Digital Transformation – Netacad website IoT Fundamentals: Connecting Things – D2L IoT Fundamentals: IoT Security – D2L

Course Content

Week 1 – Introduction: Intro to IoT

Reading

Seminar	 Cisco Netacad overview Chapter 1 – Everything is Connected Introduction to Packet Tracer (PT) 	IoT Introduction Chapter 1
Lab	 PT 1.1.1.8 – Deploying and Cabling Devices PT 1.1.2.5 – Create a Simple Network PT 1.2.2.1 – Adding IoT Devices to a Smart Hom PT 1.2.2.3 – Connect and Monitor IoT Devices 	e

Week 2 – Introduction: IoT Programming and Data

Seminar	 Chapter 2 – Everything Becomes Programmable Python Programming 	IoT Introduction Chapter 2
	- Chapter 3 – Everything Generates Data - Big Data	IoT Introduction Chapter 3
Lab	- Lab 2.1.3.6 – Setting Up a Virtualized Server - Lab 2.1.3.7 – Basic Python Programming - Lab 2.1.3.8 – Create a Simple Game with Python	
Week 3 – Inti	oduction: Automation, Security, and Opportuniti	es
Seminar	 Chapter 4 – Everything Can be Automated AI and Machine Learning 	IoT Introduction Chapter 4
	- Chapter 5 – Everything Needs to be Secured - Security	IoT Introduction Chapter 5
	- Chapter 6 – Educational/Business Opportunities - What next?	IoT Introduction Chapter 6
Lab	- PT 4.1.1.6 – Explore the Smart Home - PT 5.1.2.6 – Configure Wireless Security	

- Lab 5.1.3.6 - Discover Your Own Risky Online Behavior

FINAL EXAM for Introduction

Seminar	 Chapter 1 – Things and Connections Devices, Processes, and Connections 	IoT Connecting Chapter 1
	 Chapter 2 – Sensors/Actuators/Microcontrollers Electronics, Basic Circuits 	IoT Connecting Chapter 2 up to Section 2.2
Lab	 PT 1.2.2.5 – Connecting Devices to Build IoT PT 2.2.1.4 – Simulating IoT Devices Custom Lab – Breadboarding and Basic Lab Equ 	ipment

Week 5 – Connecting Things: Sensors, Actuators, and Microcontrollers

Seminar	 Chapter 2 – Sensors/Actuators/Microcontrollers Devices, Processes, and Connections 	IoT Connecting Chapter 2 Section 2.2 and on
Lab	- PT 2.3.1.2 - Sensors and the PT Microcontroller - PT 3.3.1.4 - SBC Actuate	

Week 6 – Connecting Things: Software is Everywhere

Seminar	- Chapter 3 – Software is Everywhere - Programming	IoT Connecting Chapter 3
Lab	- Lab 3.2.2.3 – Setting up the PL-App w Ras	pberry Pi
	 Lab 3.2.3.8 – Basic Linux Commands Lab 3.2.5.9 – Writing Simple Python Scripts 	
	- Lab 3.2.5.11 – Blinking an LED using Rasp	
<u>Week 7 – C</u>	onnecting Things: Networks, Fog and Cloud	Computing

Seminar - Chapter 4 – Networks, Fog & Cloud Computing IoT Connecting Chapter 4 - Network characteristics

Lab	- PT 4.2.2.5 - Build a Connected Factory Solution
	- PT 4.2.2.4 - Explore the Smart Home
	- PT 4.2.3.3 - Securing Cloud Services in the IoT

Week 8 – Connecting Things: Digitization of the Business | IoT Applications in Business

Seminar	 Chapter 5 – Digitization IoT Apps in Business Industrial IoT, Real World IoT 	IoT Connecting Chapter 5
Lab	- PT 5.3.2.8 Smart City	

- PT 5.3.3.4 Smart Grid

Week 9 – Connecting Things: Create an IoT Solution

Seminar	- Chapter 6 – Create an IoT Solution	IoT Connecting Chapter 6
	-Create an IoT Solution	

Lab - PT 6.3.2.3 Prototype & Test the Solution

Week 10 – IoT Fundamentals: IoT Security: IoT Under Attack, Systems and Architectures

FINAL EXAM for Connecting Things

Seminar	 Chapter 1 – The IoT Under Attack Security Challenges and Uses 	IoT Security Chapter 1
	- Chapter 2 – IoT Systems and Architectures - IoT Models and Threat Modeling	IoT Security Chapter 2
Lab	 Lab 1.2.3.1 Set Up PL-App on a Raspberry Pi Lab 1.2.3.2 Set up the IoT Security Lab Topology Lab 1.2.3.3 Harden a Raspberry Pi 	

Week 11 – IoT Security: The IoT Device Layer Attack Surface

Seminar	- Chapter 3 – IoT Device Layer Attack Surface - Security Challenges and Uses	IoT Security Chapter 3
Lab	- Lab 1.2.3.4 Investigate Vulnerability Assessmen - Lab 3.2.2.7 Compromise IoT Device Firmware	t Tools
<u>Week 12 – I</u>	oT Security: IoT Communication Layer Attack Su	<u>irface</u>
Seminar	- Chapter 4 – IoT Communication Layer Attack	IoT Security Chapter 4

	-
Lab	- Lab 4.1.2.3 Sniffing Bluetooth with the Raspberry Pi
	- Lab 4.2.2.5 Port Scanning an IoT Device
	- Lab 4.2.2.6 Packet Crafting to Exploit Unsecured Ports

- Protocol Vulnerabilities and Security

Week 13 – IoT Security: IoT Application Layer Attack Surface

Seminar	- Chapter 5 – IoT Application Layer Attack - Web and Cloud Vulnerabilities	IoT Security Chapter 5	
Lab	- Lab 5.1.2.7 Use OpenVAS for Vulnerability Asses - Lab 5.1.2.8 Challenge Passwords with Kali Tools - Lab 5.1.2.9 Web Application Vulnerability		

Week 14 – IoT Security: Vulnerability and Risk Assessment in an IoT System

Seminar	 Chapter 6 – Vulnerability / Risk Assessment Assessing Vulnerabilities and Risk 	IoT Security Chapter 6

Lab - Lab 6.2.3.6 Assess Risk with DREAD - Lab 6.3.2.7 Blockchain Demo 2.0

FINAL EXAM for Securing Things

Evaluation

Evaluation for this course will be a combined total of quizzes, course finals, and lab marks. Attendance and completion of all material is mandatory to pass the course. **Late submissions will be not graded.**

Marking Criteria:

Quizzes15		
Course Finals (3)		
Introduction	15%	
Connecting	20%	
Securing	20%	
Completion of Lab Activities	30%	

Quizzes will be based on current week's material from both seminar and lab content and delivered through D2L.

A Course Final will be completed at the end of each course covering all of the content in each course. There will be no overall final exam covering all of the three courses material.

Completion of Lab Activities will be based on finishing weekly Lab / Packet Tracer exercises and submission of <u>lab reports</u> to the D2L Dropbox by **Sunday 11:59 PM** of the corresponding week – no late labs will be graded.

Please note the following:

- 1. A grade of 50% or better is required in all assessment items above to be able to pass the course.
- 2. No late materials will be accepted past midnight of the last day of the course.
- 3. No opportunity will be available to write missed quizzes.
- 4. Attendance and completion of all lab material is mandatory to pass the course.

Required Materials

- (a) Access to CSNT 160 Camosun D2L online course materials as required
- (b) Access to Cisco Netacad site
- (c) IoT Lab Kit to be signed out to the student

Grading System

X Standard Grading System (GPA)

Competency Based Grading System

Recommended Materials or Services to Assist Students to Succeed Throughout the Course

LEARNING SUPPORT AND SERVICES FOR STUDENTS

There are a variety of services available for students to assist them throughout their learning. This information is available in the College Calendar, Student Services or the College web site at http://www.camosun.bc.ca

STUDENT CONDUCT POLICY

There is a Student Conduct Policy. It is the student's responsibility to become familiar with the content of this policy. The policy is available in each School Administration Office, Registration, and on the College web site in the Policy Section.

http://www.camosun.bc.ca/policies/policies.html

GRADING SYSTEMS <u>http://www.camosun.bc.ca/policies/policies.php</u>

The following grading system is used at Camosun College:

1. Standard Grading System (GPA)

Percentage	Grade	Description	Grade Point Equivalency
90-100	A+		9
85-89	А		8
80-84	A-		7
77-79	B+		6
73-76	В		5
70-72	B-		4
65-69	C+		3
60-64	С		2
50-59	D		1
0-49	F	Minimum level has not been achieved.	0